admin 管理员组文章数量: 887019
2024年1月18日发(作者:仓颉语言华为)
###SVM输出# -*- coding: utf-8 -*-"""Created on Sat May 26 15:07:33 2018@author: hu"""from _model import LogisticRegressionfrom ts import load_iris
import numpy as np
from sklearn import datasets#数据加载iris = _iris()#花瓣长度和宽度,2,3、两个特征值X = [:,[2,3]]#类标赋值y = #数据分区导包from _validation import train_test_split#划分数据训练集和测试集,测试集30%X_train , X_test , y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state=0)
#数据缩放,标准化from cessing import StandardScaler
sc=StandardScaler()(X_train)#计算特征样本均值和标准差X_train_std = orm(X_train)#对其样本均值和标准差做标准化处理X_test_std = orm(X_test)#对其样本均值和标准差做标准化处理
#数据加载iris = _iris()#花瓣长度和宽度,2,3、两个特征值X = [:,[2,3]]#类标赋值y = #数据分区导包from _validation import train_test_split#划分数据训练集和测试集,测试集30%X_train , X_test , y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state=0)
#数据缩放,标准化from cessing import StandardScaler
sc=StandardScaler()(X_train)#计算特征样本均值和标准差X_train_std = orm(X_train)#对其样本均值和标准差做标准化处理X_test_std = orm(X_test)#对其样本均值和标准差做标准化处理from import ListedColormapimport as plt
#可视化函数def plot_decision_regions(X,y,classifier,test_idx=None ,resolution = 0.02):
#set marker generator and color map
markers = ('s','x','o','^','v') colors = ('red','blue','lightgreen','gray','cyan') cmap = ListedColormap(colors[len((y))])
#plot the decision suiface x1_min,x1_max = X[:,0].min()-1, X[:,0].max()+1 x2_min,x2_max = X[:,0].min()-1, X[:,0].max()+1
xx1,xx2 = id((x1_min,x1_max,resolution), (x2_min,x2_max,resolution))
Z= t(([(),()]).T)
Z = e() rf(xx1,xx2,Z,alpha=0.4,cmap=cmap) ((),()) ((),())
####逻辑回归输出
# -*- coding: utf-8 -*-"""Created on Fri May 25 10:35:50 2018@author: hu"""from _model import LogisticRegressionfrom ts import load_iris
import numpy as np
from sklearn import datasets#数据加载iris = _iris()#花瓣长度和宽度,2,3、两个特征值X = [:,[2,3]]#类标赋值y = #数据分区导包from _validation import train_test_split#划分数据训练集和测试集,测试集30%X_train , X_test , y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state=0)
#数据缩放,标准化from cessing import StandardScaler
sc=StandardScaler()(X_train)#计算特征样本均值和标准差X_train_std = orm(X_train)#对其样本均值和标准差做标准化处理X_test_std = orm(X_test)#对其样本均值和标准差做标准化处理
#定义逻辑回归模型
lr = LogisticRegression(C=1000.0,random_state=0)#在强正则化参数C<0.1时罚项使得所有权重都趋向0
版权声明:本文标题:分类算法(决策树,SVM,随机森林,逻辑回归) 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/free/1705549979h489522.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论