admin 管理员组文章数量: 887021
2024年2月18日发(作者:html中引入js)
【python】y()聚合,分组级运算
pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要
等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统
计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换
或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分
组分析。
groupby分组函数:
返回值:返回重构格式的DataFrame,特别注意,groupby里面的字段内的数据重构后都会变成索引
groupby(),一般和sum()、mean()一起使用,如下例:
先自定义生成数组
import pandas as pd
df = ame({'key1':list('ababa'),
'key2': ['one','two','one','two','one'],
'data1': (5),
'data2': (5)})
print(df)
data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one
应用groupby,分组键均为Series(譬如df[‘xx’]),实际上分组
键可以是任何长度适当的数组
#将df['data1']按照分组键为df['key1']进行分组
grouped=df['data1'].groupby(df['key1'])
print(())
key1
a -0.257707
b 0.287671
Name: data1, dtype: float64
states=(['Ohio','California','California','Ohio','Ohio'])
years=([2005,2005,2006,2005,2006])
#states第一层索引,years第二层分层索引
print(df['data1'].groupby([states,years]).mean())
California 2005 0.791463
2006 0.462611
Ohio 2005 -0.764611
2006 0.077367
Name: data1, dtype: float64
#df根据‘key1’分组,然后对df剩余数值型的数据运算
y('key1').mean()
data1 data2
key1
a -0.257707 0.138120
b 0.287671 1.239013
#可以看出没有key2列,因为df[‘key2’]不是数值数据,所以被从结果中移除。默认情况下,所有数值列都会被聚合,虽然有时可能被过滤为一个子集。
对分组进行迭代
#name就是groupby中的key1的值,group就是要输出的内容
for name, group in y('key1'):
print (name,group)
a data1 data2 key1 key2
0 -1.313101 -0.453361 a one
2 0.462611 1.150597 a one
4 0.077367 -0.282876 a one
b data1 data2 key1 key2
1 0.791463 1.096693 b two
3 -0.216121 1.381333 b two
对group by后的内容进行操作,可转换成字典
#转化为字典
piece=dict(list(y('key1')))
{'a': data1 data2 key1 key2
0 -1.313101 -0.453361 a one
2 0.462611 1.150597 a one
4 0.077367 -0.282876 a one, 'b': data1 data2 key1
key2
1 0.791463 1.096693 b two
3 -0.216121 1.381333 b two}
#对字典取值
value = piece['a']
groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组
grouped=y(, axis=1)
value = dict(list(grouped))
print(value)
{dtype('float64'): data1 data2
0 -1.313101 -0.453361
1 0.791463 1.096693
2 0.462611 1.150597
3 -0.216121 1.381333
4 0.077367 -0.282876, dtype('O'): key1 key2
0 a one
1 b two
2 a one
3 b two
4 a one}
对于大数据,很多情况是只需要对部分列进行聚合
#对df进行'key1','key2'的两次分组,然后取data2的数据,对两次细分的分组数据取均值
value = y(['key1','key2'])[['data2']].mean()
data2
key1 key2
a one 0.138120
b two 1.239013
----------------------------------
df
Out[1]:
data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one
----------------------------------
df['key2'].iloc[-1] ='two'
value = y(['key1','key2'])[['data2']].mean()
value
Out[2]:
data2
key1 key2
a one 0.348618
two -0.282876
b two 1.239013
版权声明:本文标题:【python】DataFrame.groupby()聚合,分组级运算 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/free/1708270883h518265.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论