admin 管理员组

文章数量: 887021


2024年2月22日发(作者:广东省疫情最新)

计算机知识(负数的计算方法)

只有有符号的整数才有原码、反码和补码的!其他的类型一概没有。虽然我们也可以用二进制中最小的数去对应最小的负数,最大的也相对应,但是那样不科学,下面来说说科学的方法。还是说一个字节的整数,不过这次是有符号的啦,1个字节它不管怎么样还是只能表示256个数,因为有符号所以我们就把它表示成范围:-128-127。它在计算机中是怎么储存的呢?可以这样理解,用最高位表示符号位,如果是0表示正数,如果是1表示负数,剩下的7位用来储存数的绝对值的话,能表示27个数的绝对值,再考虑正负两种情况,27*2还是256个数。首先定义0在计算机中储存为00000000,对于正数我们依然可以像无符号数那样换算,从00000001到01111111依次表示1到127。那么这些数对应的二进制码就是这些数的原码。到这里很多人就会想,那负数是不是从10000001到11111111依次表示-1到-127,那你发现没有,如果这样的话那么一共就只有255个数了,因为10000000的情况没有考虑在内。实际上,10000000在计算机中表示最小的负整数,就是这里的-128,而且实际上并不是从10000001到11111111依次表示-1到-127,而是刚好相反的,从10000001到11111111依次表示-127到-1。负整数在计算机中是以补码形式储存的,补码是怎么样表示的呢,这里还要引入另一个概念——反码,所谓反码就是把负数的原码(负数的原码和和它的绝对值所对应的原码相同,简单的说就是绝对值相同的数原码相同)各个位按位取反,是1就换成0,是0就换成1,如-1的原码是00000001,和1的原码相同,那么-1的反码就是11111110,而补码就是在反码的基础上加1,即-1的补码是11111110+1=11111111,因此我们可以算出-1在计算机中是按11111111储存的。总结一下,计算机储存有符号的整数时,是用该整数的补码进行储存的,0的原码、补码都是0,正数的原码、补码可以特殊理解为相同,负数的补码是它的反码加1。下面再多举几个例子,来帮助大家理解!

十进制 → 二进制 (怎么算?要是不知道看计算机基础的书去)

47 → 101111

有符号的整数 原码 反码 补码

47 00101111 00101111 00101111(正数补码和原码、反码相同,不能从字面理解)

-47 10101111 11010000 11010001(负数补码是在反码上加

1)

“反码和补码技术是怎样被提出的? ”

====================1.预备知识。==================

注意:此处的 '== '是相等的意思。 '= '是赋值的意思。

在机器世界里:

正数的最高位是符号位0,负数的最高位是符号位1。

对于正数:反码==补码==原码。

对于负数:反码==除符号位以外的各位取反。

补码==反码+1.

原码==补码-1后的反码==补码的反码+1。(读完本文后,应该能够直观地认识到本式的正确性)

可以轻易发现如下规律:

自然计算 :a-b==c.

计算机计算:a-b==a+b的补码==d.

c的补码是d.

通过此法,可以把减法运算转换为加法运算。

所以补码的设计目的是:

1.使符号位能与有效值部分一起参加运算,从而简化运算规则.

2.减运算转换为加运算,进一步简化计算机中运算器的线路设计.

=====================2.灵感由来。=================

概念定义:

还记得初中数学里的“补角”的概念吧。

两数之和等于100时,这两个数叫做互为“补数”,100称做“和数”。

如果B+C==100,则

A-B==A-(100-C)==A+C-100.

可以肯定:A-B=A+B的补数-和数。

把这个方法引入机器世界:

设int是8位整数(最高位是符号位),和数H是9位:1 0000 0000.

a,b是任意两int.

显然,a+a的补码==H,H溢出那个最高位之后就剩下了int值0.

①.输入a-b,

②.机器将a-b化个装后喂给加法器:(a的补码)+(-b的补码),它等于c.

不要忘了,c是一个补码.

③.输出:c的原码.

赋值A=a,B=b后,比较一下:

a-b==(a的补码)+(-b的补码)==c.//此处的c是补码形式。

A-B==A+B的补数-和数==C.//此处的C是数字,可以认为它就是原码形式。

if(C> =0) C==c==c的原码;( '== '是相等的意思,并非赋值)

else C==c的原码;

这个“补码”中的“补”,跟初中学的那个“补”是一个意思。

数学中的概念名称真还不是随便定义的,比如“数理逻辑”,故名思义就是:用“数学语言”来理清“逻辑”。

一:对于正数,原码和反码,补码都是一样的,都是正数本身。

对于负数,原码是符号位为1,数值部分取X绝对值的二进制。

反码是符号位为1,其它位是原码取反。

补码是符号位为1,其它位是原码取反,未位加1。

也就是说,负数的补码是其反码未位加1。

移码就是将符号位取反的补码

二:在计算机中,实际上只有加法运算,减法运算也要转换为加法运算,

乘法转换为加法运算,除法转换为减法运算。

三:在计算机中,对任意一个带有符号的二进制,都是按其补码的形式进行运算和存储的。

之所以是以补码方式进行处理,而不按原码和反码方式进行处理,是因为在对带有符号位的

原码和反码进行运算时,计算机处理起来有问题。(具体原因见理解原码,反码与补码)

而按补码方式,

一方面使符号位能与有效值部分一起参加运算,从而简化运算规则.

另一方面使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计

四:补码加、减运算公式

1):补码加法公式

[X+Y]补 = [X]补 + [Y]补

2):补码减法公式

[X-Y]补 = [X]补-[Y]补 = [X]补 + [-Y]补

其中:[-Y]补称为负补,求负补的办法是:对补码的每一位(包括符合位)求反,且未位加1.

补码

百科名片

补码

补码(two's complement) 1、在计算机系统中,数值一律用补码来表示(存储)。 主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补 码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。 2、补码与原码的转换过程几乎是相同的。

目录[隐藏]

补码概述

代数加减运算

补码的代数解释

补码概述

代数加减运算

补码的代数解释

[编辑本段]

补码概述

求给定数值的补码表示分以下两种情况:

(1)正数的补码

与原码相同。

【例1】+9的补码是00001001。

(2)负数的补码

符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。

【例2】求-7的补码。

因为给定数是负数,则符号位为“1”。

后七位:+7的原码(0000111)→按位取反(1111000)→加1(1111001)

所以-7的补码是11111001。

已知一个数的补码,求原码的操作分两种情况:

(1)如果补码的符号位为“0”,表示是一个正数,其原码就是补码。

(2)如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。

另一种方法求负数的补码如下:

例如:求-15的补码

第一步:+15:00001111

第二步:逐位取反(1变成0,0变成1),然后在末尾加1。

11110001

再举一个例子验证下:求-64的补码

+64:01000000

11000000

【例3】已知一个补码为11111001,则原码是10000111(-7)。

因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。

其余七位1111001取反后为0000110;

再加1,所以是10000111。

在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”

的概念:

“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范

围,即都存在一个“模”。例如:

时钟的计量范围是0~11,模=12。

表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的

余数。任何有模的计量器,均可化减法为加法运算。

例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:

一种是倒拨4小时,即:10-4=6

另一种是顺拨8小时:10+8=12+6=6

在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。

对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特

性。共同的特点是两者相加等于模。

对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再

加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的

模为2^8。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以

了。把补数用到计算机对数的处理上,就是补码。

另外两个概念

一的补码(one's complement) 指的是正数=原码,负数=反码

而二的补码(two's complement) 指的就是通常所指的补码。

(3).补码的绝对值(称为真值)

【例4】-65的补码是10111111

若直接将10111111转换成十进制,发现结果并不是-65,而是191。

事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。

若要得到一个负二进制数的绝对值(称为真值),只要各位(包括符号位)取反,再加1,就得到真值。

如:二进制值:10111111(-65的补码)

各位取反:01000000

加1:01000001(+65的补码)

[编辑本段]

代数加减运算

1、补码加法

[X+Y]补 = [X]补 + [Y]补

【例5】X=+0110011,Y=-0101001,求[X+Y]补

[X]补=00110011 [Y]补=11010111

[X+Y]补 = [X]补 + [Y]补 = 00110011+11010111=00001010

注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是

100001010,而是00001010。

2、补码减法

[X-Y]补 = [X]补 - [Y]补 = [X]补 + [-Y]补

其中[-Y]补称为负补,求负补的方法是:所有位(包括符号位)按位取反;然后整个数加1。

【例6】1+(-1) [十进制]

1的原码00000001 转换成补码:00000001

-1的原码10000001 转换成补码:11111111

1+(-1)=0

00000001+11111111=00000000

00000000转换成十进制为0

0=0所以运算正确。

3、补码乘法

设被乘数【X】补=X0.X1X2……Xn-1,乘数【Y】补=Y0.Y1Y2……Yn-1,

【X*Y】补=【X】补×【Y】补,即乘数(被乘数)相乘的补码等于补码的相乘。

[编辑本段]

补码的代数解释

任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;

这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)

这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。

不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。

注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1。

C语言中,就是用补码进行存储和运算的

在计算机系统中,数值一律用补码来表示(存储)。

主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补

码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。

2、补码与原码的转换过程几乎是相同的。

数值的补码表示也分两种情况:

(1)正数的补码:与原码相同。

例如,+9的补码是00001001。

(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。

例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码

0000111按位取反为1111000;再加1,所以-7的补码是11111001。

已知一个数的补码,求原码的操作分两种情况:

(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。

(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取

反,然后再整个数加1。

例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负

数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。

在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”

的概念:

“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范

围,即都存在一个“模”。例如:

时钟的计量范围是0~11,模=12。

表示n位的计算机计量范围是0~2(n)-1,模=2(n)。【注:n表示指数】

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的

余数。任何有模的计量器,均可化减法为加法运算。

例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:

一种是倒拨4小时,即:10-4=6

另一种是顺拨8小时:10+8=12+6=6

在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。

对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特

性。共同的特点是两者相加等于模。

对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再

加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的

模为2(8)。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以

了。把补数用到计算机对数的处理上,就是补码。


本文标签: 补码 运算 符号