admin 管理员组文章数量: 887018
2024年3月9日发(作者:谭浩强c语言程序设计pdf下载)
Energetic MaterialsEdited by U. TeipelEnergetic Materials. Edited by Ulrich TeipelCopyright ©2005 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30240-9
Also of InterestKubota, lants and ExplosivesThermochemical Aspects of Combustion2002, isbn3-527-30210-7Hattwig, M., Steen, H. (Eds.)Handbook of Explosion Prevention and Protection2003, isbn3-527-30718-4Meyer, R., Köhler, J., Homburg, ivesFifth, Completely Revised Edition2002, isbn3-527-30267-0
Energetic MaterialsParticle Processing and CharacterizationEdited by Ulrich Teipel
Prof. Dr.-Ing. Ulrich TeipelFraunhofer InstitutChemische TechnologieJoseph-von-Fraunhofer-Str. 776327 Pfinztal (Berghausen)GermanyAll books published by Wiley-VCH are carefully pro-duced. Nevertheless, authors, editor, and publisherdo not warrant the information contained in thesebooks, including this book, to be free of errors. Read-ers are advised to keep in mind that statements, data,illustrations, procedural details or other items mayinadvertently be y of Congress Card No.: Applied forBritish Library Cataloguing-in-Publication DataA catalogue record for this book is available from theBritish he Bibliothek Cataloguing-in-Publication Data© 2005 WILEY-VCH Verlag GmbH & Co. KGaA,WeinheimPrinted on acid-free rights reserved (including those of translation inother languages). No part of this book may be re-produced in any form – by photoprinting, microfilm,or any other means – nor transmitted or translatedinto machine language without written permissionfrom the publishers. Registered names, trademarks,etc. used in this book, even when not specificallymarked as such, are not to be considered unpro-tected by itionTypomedia GmbH, OstfildernPrintingStrauss GmbH, MörlenbachBookbindingLitges & Dopf Buchbinderei GmbH,HeppenheimPrinted in the Federal Republic of 3-527-30240-9
VTable of ContentsPrefaceXVIIList of Constributors11.11.1.11.21.2.11.2.21.2.31.31.3.11.3.1.11.3.1.21.3.1.31.3.21.3.31.3.1.11.3.3.21.3.41.3.4.11.3.4.21.3.4.31.3.4.41.3.4.51.3.51.41.51.6XIXNew Energetic Materials1Horst H. KrauseIntroduction1Applications of Energetic Materials1Application Requirements3Explosives3Solid Rocket Propellants7Propellant Powder9New Energetic Materials11CL-2011Synthesis and Availability of CL-2011Chemical and Thermal Properties of CL-2012Sensitivity and Phase Behavior of CL-2013Octanitrocubane14TNAZ15Chemical and Thermal Properties of TNAZ16Synthesis and Availability of TNAZ16ADN17Synthesis and Availability of ADN17Thermal Behavior of ADN18Long-term Stability of ADN19Processability of ADN19Safety Properties of ADN20FOX-7 (1,1-Diamino-2,2-dinitroethylene)20Conclusion21Acknowledgments23References24Energetic Materials. Edited by Ulrich TeipelCopyright ©2005 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30240-9
VITable of Contents22.12.1.12.1.22.1.32.22.2.12.2.22.2.32.2.42.2.52.2.62.33Size Reduction27U. Teipel, I. MikonsaariFundamentals of Size Reduction27Material and Crack Behavior27Size Reduction Energy29Selection Criteria for Size Reduction ProcessesSize Reduction Processes33Pinned Disk Mill33Jet Mill34Colloid Mills36Grinding by Ultrasonic Energy38Rotor Stator Dispersing System43Agitator Ball Mill46References51323.13.1.13.1.23.1.2.13.1.2.23.1.2.33.1.2.43.1.33.23.2.13.2.23.2.2.13.2.2.23.2.2.33.2.33.2.43.2.53.2.5.13.2.5.23.2.5.33.2.5.43.2.63.2.6.13.2.6.23.2.6.33.2.6.43.2.7Crystallization53A. v. d. Heijden, J. ter Horst, J. Kendrick, K.-J. Kim, H. Kröber, F. Simon,U. TeipelFundamentals of Crystallization53Thermodynamics and Kinetics53Crystallization Apparatus and Process57Melt Crystallization57Cooling Crystallization59Evaporation Crystallization60Precipitation and Reaction Crystallization60Crystal Defects62Crystallization of Energetic Materials65Introduction65Crystallization and Product Quality65Definition of Product Quality66Process Problems and Product Quality67Product Quality of Energetic Materials69Crystallization of HMX and RDX76Crystallization of CL 2082Crystallzation of NTO83Kinetics of NTO Crystallization85Control of Size and Shape by Recrystallization94Seeded Cooling Crystallization98Scale-up of Crystallizer100Phase Stabilized Ammonium Nitrate (PSAN)105Introduction105Understanding and Measuring of the Phase Transitions106Improving the Phase Behavior106Production Process108Crystallization of ADN109
Table of ContentsVII3.33.3.13.3.23.3.2.13.3.2.23.3.2.33.3.2.43.3.2.53.3.2.63.3.2.73.3.2.83.3.2.93.3.2.103.3.33.3.3.13.3.3.23.3.3.33.444.14.24.2.14.2.24.2.34.2.44.34.3.14.3.24.3.34.3.44.44.54.655.15.1.15.1.25.1.35.1.4Simulation112Introduction112Molecular Modeling of Energetic Materials113Molecular Structure of Energetic Materials113Molecular Modeling of Dimethylnitramine117Molecular Modeling of RDX120Molecular Modeling of HNIW (CL 20)125Molecular Modeling of Processing Aids130The Crystal Surface132Crystal Morphology133A Procedure for Molecular Modeling SimulationsCase Study: RDX Crystal Morphology137Simulation of Other Phenomena143Simulation of Crystallization Processes144Scope of the Calculation Procedure144Simulation of a Crystal Growth Process145Results and Conclusion148References150134Crystallization with Compressed Gases159E. Reverchon, H. Kröber, U. TeipelIntroduction159Rapid Expansion of Supercritical Solutions160Effect of Pre-expansion Pressure, Temperature and Concentration onRESS161Effect of Post-expansion Pressure and Temperature on RESS162Effect of Nozzle Geometry and Dimensions on RESS162RESS Modeling163Supercritical Antisolvent Precipitation164Effect of Pressure and Temperature on SAS168Effect of Concentration of the Liquid Solution on SAS169Effect of the Chemical Composition of the Liquid Solvent and of Soluteon SAS169SAS Modeling170Precipitation of Energetic Materials by Supercritical Fluids171Conclusions and Perspectives178References178Size Enlargement183E. Schmidt, R. Nastke, T. Heintz, M. Niehaus, U. TeipelAgglomeration183Introduction183Binding Mechanisms – Interparticle Forces183Growth Mechanisms and Growth Kinetics184Equipment and Processes185
VIIITable of Contents5.1.4.15.1.4.25.1.4.35.25.2.15.2.25.2.2.15.2.35.2.3.15.2.3.25.2.3.35.2.45.2.55.2.5.15.2.5.25.2.5.35.366.16.26.36.46.56.66.76.87Tumble Agglomeration185Pressure Agglomeration186Other Methods for Agglomeration187Microencapsulating and Coating Processes188Basics of Technologies188Introduction190Preparation of the Microcapsules191Procedures192Physical Procedures193Physico-chemical Procedures200Chemical Procedures201Microencapsulation of Energetic Materials203Coating with Supercritical Fluids in a Fluidized BedIntroduction208Experimental Setup209Coating Mechanism210References219Mixing225A.C. Hordijk, A. v. d. HeijdenIntroduction225Theory226Type of Mixers228Mixing Time and Efficiency230Sequence of Addition of IngredientsScale Effects235Conclusions235References2362082337.17.1.17.1.27.1.37.1.3.17.1.3.27.1.3.37.1.3.47.1.3.57.1.4Nanoparticles237A.E. Gash, R.L. Simpson, Y. Babushkin, A.I. Lyamkin, F. Tepper, Y. Biryukov,tsov, V. ZarkoNano-structured Energetic Materials Using Sol-Gel Chemistry237Introduction237The Sol-Gel Method240Experimental241Preparation of FexOyGels from Inorganic Fe(III) Salts241Processing of MxOyGels243Preparation of FexOy-Al(s) Pyrotechnic Nanocomposites243Preparation of Resorcinol-Formaldehyde-Ammonium PerchlorateEnergetic Nanocomposites243Physical Characterization of MxOyAerogels and Xerogels and of
FexOy-Al(s) Pyrotechnic Nanocomposites243Energetic Nanocomposites244
Table of ContentsIX7.1.57.1.5.17.1.5.27.1.5.37.1.67.1.77.1.87.1.97.27.2.17.2.27.2.2.17.2.2.27.2.2.37.2.37.2.47.2.57.37.3.17.3.27.3.37.3.47.3.57.3.5.17.3.5.27.3.67.3.77.3.87.47.4.17.4.27.4.37.4.3.17.4.3.27.4.3.37.4.3.4Preparation of Nanosized Metal Oxide Component by Sol-GelMethods245Effect of the Solvent on Fe2O3Syntheses246Microscopy of Fe2O3gels248Surface Area, Pore Size and Pore Volume Analyses250Iron Oxide-Aluminum Nanocomposites251Gas-generating Energetic Nanocomposites254Hydrocarbon-Ammonium Perchlorate Nanocomposites254Summary255Detonation Synthesis of Ultrafine Diamond Particles fromExplosives256Introduction256Ultrafine Diamond Formation Mechanism257Ultrafine Diamond Formed in the Chemical Reaction Zone of the Deto-nation Wave257Free Carbon Condensed in the Zone of Chemical Reaction in the Amor-phous Form259Detonation Wave Diamond Formed as a Result of the PolymorphicTransformation of the Amorphous Carbon260Influence of the External Conditions on the Diamond Yield261Properties and Application of Ultrafine Diamond Particles265Conclusion267ALEX®Nanosize Aluminum for Energetic Applications267Introduction267Description of the Process268Characteristics of the Powders269Behavior as a Solid Propellant and Hybrid Additive270Alex®Powder as an Additive to Liquid Fuels271Formulation of Aluminized Gels272Ignition Delay Measurements273Alex®in Explosives274Alex®in Gun Propellants275Conclusions275Pneumatic Production Methods for Powdered Energetic Materials275Fundamentals and Advantages of Pneumatic Production Methods forPowdered Energetic Materials275New Universal Pneumatic Unit for Processing of Energetic Materialsand Submicron Powders276Results of Powder Processing Research277Size Reduction of Materials and Submicron Aluminum
Powder Production277Classification of the Particles by Sizes282Blending and Homogenization of Powders and Components ofEnergetic Materials285Powder Drying287
XTable of Contents7.4.3.57.4.3.67.4.3.77.588.18.1.18.1.28.1.38.1.48.1.4.18.1.4.28.1.4.38.1.4.48.1.4.58.1.4.68.1.4.78.28.2.18.2.1.18.2.1.28.2.1.38.2.28.2.38.2.3.18.2.3.28.2.3.38.2.48.399.19.29.2.19.2.1.19.2.1.29.2.29.2.2.19.2.2.29.2.2.39.3Granulation288Pneumatic Transport of Powder Materials288A Solution to Dust-collection Problems in Pneumatic Technology
of Powders289References289Particle Characterization293U. Teipel, J.K. BremserParticle Size Analysis293Size and Shape of a Single Particle293Particle Size Distributions295Sample Collection and Sample Preparation299Methods of Particle Size Measurement300Sieve Analysis301Sedimentation Analysis303Image Analysis304Coulter Counter305Laser Light Diffraction Spectrometry306Dynamic Light Scattering322Ultrasonic Spectrometry324Properties of Powders325Density325Particle Density325Bulk Density325Tap Density326Water Content326Surface Area327Photometric Method328Permeation method328Sorption Technique328Flow Properties329References330Microstructure and Morphology333L. Borne, M. Herrmann, C.B. SkidmoreIntroduction333Defects of Explosive Particles333Internal Defects333Optical Microscopy with Matching Refractive Index334The ISL Sink-Float Experiment336Surface Defects337Microscopy338Gas Adsorption Method339Hg Porosimetry340Characterization of the Microstructure by X-ray Diffraction342
Table of ContentsXI9.3.19.3.29.3.2.19.3.2.29.3.2.39.3.2.49.3.2.59.3.39.3.3.19.3.3.29.3.3.39.3.3.49.3.3.59.49.4.19.4.29.4.2.19.4.2.29.4.2.39.4.39.4.3.19.4.3.29.4.3.39.4.49.4.4.19.4.4.29.4.4.39.51010.110.1.110.1.210.1.310.210.2.110.2.210.2.310.2.410.2.4.110.2.4.210.2.4.310.2.4.4Principles342Evaluation343Phase Identification343Crystal Structure343Quantitative Phase Analysis343Dynamic Investigations343Particle Size and Micro Strain344Applications344Phases and Crystal Structures of CL20344Phase Transitions and Thermal Expansion of Ammonium
Nitrate346Quantitative Analysis and Interaction of ADN and AN348Lattice Defects and Micro Strain in HMX348Simulation of Microstructures351Composite Explosives as Probed with Microscopy352Introduction352Methods353Reflected Parallel Polarized Light Microscopy (RPPL)353Secondary Electron Imaging (SEI)354Other Microscopic Methods354Application to HMX Composites355Effects of Quasi-static Mechanical Insult355Effects of Thermal Insult356Effects of Dynamic Impact359Application to TATB Composites360Effects of Quasi-static Mechanical Insult360Effects of Reprocessing361Effects of Thermal Insults362References363Thermal and Chemical Analysis367S. Löbbecke, M. Kaiser, G.A. ChiganovaCharacterization of Energetic Materials by Thermal Analysis367Introduction367Thermal Analysis of Ammonium Dinitramide (ADN)368Thermal Analysis of Hexanitrohexaazaisowurtzitane (CL 20)374Characterization of Energetic Materials by NMR Spectroscopy378Introduction378Theory of the NMR Method379Instruments and Methods381Characterization of ADN and CL 20 by NMR Spectroscopy3821H NMR Spectroscopy38213C NMR Spectroscopy38214N NMR Spectroscopy38415N NMR Spectroscopy385
XIITable of Contents10.2.4.510.2.510.2.5.110.310.3.110.3.210.3.2.110.3.2.210.3.2.310.3.310.3.3.110.3.3.210.3.3.310.410.51111.111.211.2.111.2.211.2.311.2.411.2.4.111.2.511.2.5.111.2.5.211.311.3.111.3.211.3.311.3.411.3.511.3.611.412O NMR Spectroscopy386Structure Determination of 4-FPNIW by NMR Spectroscopy3871H NMR Spectroscopic Investigations388Chemical Decomposition in Analysis of Shock Wave SynthesisMaterials394Introduction394Experimental395Samples395Chemical Decomposition in a Phase Analysis395Chemical Decomposition in the Analysis of Impurity DistributionResults and Discussion396Phase Composition of Aluminum Oxide Powders396Phase Composition of Detonation Carbon397Distribution of Impurities in Ultrafine Diamonds398Conclusion399References400Wettability Analysis403U. Teipel, I. Mikonsaari, S. TorryIntroduction403Determination of Surface Energy404Theory of Surface Tension404Models for Determining the Free Interfacial Energy405Contact Angle Determination on Flat Surfaces406Contact Angle Measurements on Bulk Powders using the CapillaryPenetration Method408Measurement Principles for the Capillary Penetration Method409Experimental Results410Contact Angle Determination by the Plate Method410Contact Angle Measurements of Bulk Powders using the CapillaryPenetration Method411Surface Characterization using Chromatographic Techniques414Inverse Gas Chromatography415Typical IGC Experimental Conditions415IGC Theory416Typical IGC Results for HMX and RDX Surfaces419Inverse Liquid Chromatography424Conclusions428References429Rheology433U. Teipel, A.C. Hordijk, U. Förter-Barth, D.M. Hoffman, C. Hübner,V. Valtsifer, Stationary Shear Flow433Flow Behavior of Fluids4341739612.112.2
Table of ContentsXIII12.312.412.4.112.4.1.112.4.1.212.4.212.512.5.112.5.212.5.312.5.412.5.512.5.612.5.6.112.5.6.212.5.6.312.612.6.112.6.212.6.312.712.7.112.7.212.7.312.812.912.9.112.9.1.112.9.1.212.9.1.312.9.1.412.9.1.512.9.212.9.312.9.412.9.4.112.9.4.212.1012.10.1Non-stationary Shear Flow436Rheometers438Rotational Rheometers438Coaxial Rotational Rheometers438Cone and Plate Rheometers439Capillary Rheometer440Rheology of Suspensions441Relative Viscosity of Dispersed Systems441Matrix Fluid442Disperse Phase444Castability448Curing and the Effect of Time449Nano-scale Suspensions450Flow Behavior of Paraffin Oil/Aluminum Suspensions451Flow Behavior of HTPB/Aluminum Suspensions453Viscoelastic Properties of the Suspensions454Gel Propellants455Materials and Methods457Steady-state Shear Flow Behavior of Nitromethane/Silicon DioxideGels458Viscoelastic Properties of Nitromethane/Silicon Dioxide Gels461Rheology as a Development Tool for Injection Moldable
Explosives462Effect of Solids Content465Effect of Particle Size Distribution466Effect of Thixotropy470Computer Simulation of Rheological Behavior of Suspensions475Rheology of Solid Energetic Materials480Viscoelastic Behavior of Energetic Materials482Stresses and Strains482Material Laws and Constitutive Equations482Examples of Constitutive Equations in One Dimension483Examples of Constitutive Equations in More Dimensions484Description of the Mechanical Behavior of Energetic
Materials485Measurement of Mechanical Properties of Solid Viscoelastic EnergeticMaterials488Micromechanical Phenomena in Energetic Materials and theirInfluence on Macroscopic Mechanical Behavior489Special Measurement Techniques for the Detection of MicromechanicalPhenomena490Direct Methods490Indirect Methods491Injection Loading Technology492Introduction492
XIVTable of Contents12.10.212.10.2.112.10.2.212.10.2.312.10.312.10.3.112.10.3.212.10.412.111313.113.1.113.1.213.1.313.1.413.1.513.213.2.113.2.1.113.2.1.213.2.213.313.3.113.3.213.3.313.3.413.3.513.413.4.113.4.213.4.313.4.413.4.513.513.5.113.5.213.5.313.5.3.113.5.3.2Energetic Material FormulationParticle Size Distribution494Binder Selection495Applied Rheology497Process Design498Process Geometry498Transport Phenomena500Process Control501References503494Performance of Energetic Materials509N. Eisenreich, L. Borne, R.S. Lee, J.W. Forbes, H.K. CiezkiInfluence of Particle Size on Reactions of Energetic Materials509Introduction509Principles of Reacting Particles510Composite Rocket Propellants516Pyrotechnic Mixtures522Detonation524Defects of Explosive Particles and Sensitivity of Cast
Formulations527Influence of Internal and Surface Defects of Explosive Particles528Effects of Internal Defects528Effects of Surface Defects530Magnitude of the Effects of the Defects of the Explosive Particles on theSensitivity of Cast Formulations532A New, Small-Scale Test for Characterizing Explosive Performance535Motivation for Developing a New Test535Description of Test Fixture and Procedure536The CALE Hydrodynamics Code537Experimental Results and Comparison with Calculations537Experimental Testing of LLM-105542Diagnostics of Shock Wave Processes in Energetic Materials543Introduction543Test Apparatus545Electromagnetic Particle Velocity Gauge546Manganin Pressure Transducer547Other Gauges553Diagnostics for the Combustion of Particle-Containing Solid Fuels withRegard to Ramjet Relevant Conditions554Introduction554Classification of Diagnostic Techniques and General Considera-tions556Intrusive Probes560General Remarks560Sampling Probes562
Table of ContentsXV13.5.413.5.513.5.613.5.713.6Self-Emissions574Color Schlieren575Velocity Measurements with Scattering Techniques579Coherent Anti-Stokes Raman Spectroscopy (CARS)584References590Index601
XVIIPrefaceNowadays, propellants, explosives and pyrotechnics are composed mainly of partic-ulate energetic materials. These are gaining in importance as a way to optimize theperformance, burning behavior, stability, detonation properties, processing charac-teristics and, above all, the low sensitivity of these systems. By varying the character-istic profile of these materials, product design provides for particulate componentsspecially optimized for the application in question. Well-known solid formationprocesses are often used to create particles of energetic materials, such as crystalliza-tion or precipitation, comminution or atomization. Although there is a certainamount of information available about these processes for particle syntheses orprocessing, there is currently a lack of detailed comprehension in some points,which is needed to be able to completely control the particle formation process or tomake reliable predictions about the profile required by the user for the particles socreated. Vital questions and tasks remaining for particle technology of energeticmaterials are the comprehensive characterization of particulate components, theexperimental determination of the kinetics of particle formation processes, theinfluence of the manufacturing process on important particle characteristics, suchas particle size distribution, morphology or polymorphy, the simulation and model-ing of particle formation processes and particulate materials, as well as the creationof low-defect particles with regard to the sensitivity of propellants and book is targeted at those working in industry, government or R&D, andinvolved in the fascinating field of energetic or other special materials. It willhopefully contribute to summarizing our current level of volume begins with an introduction to the topic, with a focus on novelenergetic materials. One of the main subjects, namely production, is described inchapters two to four, beginning with a look at processes used to reduce the size ofthe materials, followed by a detailed treatment of crystallization. After coveringcertain basics, the possibilities of designing hexogen, octogen, CL 20, NTO, ammo-nium nitrate and ammonium dinitramide in particular using crystallization areexamined. In addition, the possibilities currently offered by simulation and thepotential of crystallization with compressed gas are looked at. Alongside the mixingprocess of disperse systems important for particle processing, a whole chapter dealswith the product design of particulate materials using microencapsulation andparticle coating. This is followed by the increasingly important topic of nano-Energetic Materials. Edited by Ulrich TeipelCopyright ©2005 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30240-9
XVIIIPrefaceparticles. The remaining chapters deal primarily with the second main topic of thisbook, the characterization of particle characteristics. They present the possibilitiesand limitation of particle size analysis, microstructures, polymorphy and morphol-ogy as well as the analysis of chemical and thermal properties and wettability. Therheological behavior of dispersions composed of particulate energetic materials andthe relevant binder materials as well as that of solids are treated separately inChapter 12. The whole is rounded off with a look at the performance of energeticmaterials, including the influence of particle size on reactions, that of crystal defectson the sensitivity of formulations and the diagnostics of shock wave and authors have incorporated in this work their excellent scientific expertise,knowledge and experience in particle technology as related to energetic materials. Itwas vital for this publication to win renowned colleagues as expert co-authors, andas its editor, I would like to thank all the authors for their willingness to work on thisbook. My gratitude is also extended to those who worked in different ways “in thebackground” for the individual authors and the editor. In particular I wish tosincerely thank Ulrich Förter-Barth and Hartmut Kröber as well as Irma Mikonsaarifor their continuous and varied support in the preparation and carrying out of theproject, as well as the reviewing, processing and correcting of the manuscripts. Ialso wish to thank the staff at Wiley-VCH for their cooperation from the start of theproject until completion of the al, September 2004Ulrich Teipel
XIXList of ContributorsEditorProf. Dr.-Ing. Ulrich TeipelFraunhofer Institut für Chemische Technologie (ICT)Department of Energetic MaterialsParticle TechnologyJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, GermanyAuthorsProf. Dr. A. Yu. BabushkinKrasnoyarsk State Technical University26, Kirensky yarsk 660074, Russia(Chapter 7)Dr. Yuri A. BiryukovTomsk State UniversityInnovate-Technological Scientific-Educational Center36, LeninTomsk 634050, Russia(Chapter 7)Dr. Lionel BorneFrench-German Research Institute ofSaint-Louis (ISL)5 Rue Du General CassagnouP.O. Box 3468301 Saint – Louis, France(Chapter 9, 13)M. Sc. Julie K. BremserMaterial Characterization LaboratoryLos Alamos National LaboratoryP.O. Box 1663, MS G770Los Alamos, NM 87545, USA(Chapter 8)Dr. G.A. ChiganovaKrasnoyarsk State Technical University26, Kirensky yarsk 660074, Russia(Chapter 10)Dr. Helmut CiezkiDLR – Deutsches Zentrum für Luft-und Raumfahrt, RaumfahrtantriebeLampoldshausen74239 Hardthausen, Germany(Chapter 13)Energetic Materials. Edited by Ulrich TeipelCopyright ©2005 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30240-9
XXList of ContributorsDr. Norbert EisenreichFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic SystemsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 13)Dr. Jerry W. ForbesUniversity of CaliforniaLawrence Livermore NationalLaboratoryP.O. Box 808, L – 282Livermore, CA 94551, USA(Chapter 13)Dipl.-Ing. Ulrich Förter-BarthFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 12)Dr. Alexander E. GashUniversity of CaliforniaLawrence Livermore NationalLaboratoryP.O. Box 808, L – 282Livermore, CA 94551, USA(Chapter 7)Dipl.-Ing. Thomas HeintzFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 5)Dr. Michael HerrmannFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 9)Dr. D. Mark HoffmanUniversity of CaliforniaLawrence Livermore NationalLaboratoryP.O. Box 808, L – 282Livermore, CA 94551, USA(Chapter 12)Ing. Aat C. HordijkTNO Prins Maurits LaboratoryResearch Group Pyrotechnics andEnergetic MaterialsLange Kleiweg 137, P.O. Box 452280 AA Rijswijk, The Netherlands(Chapter 6, 12)Dr.-Ing. Christof HübnerFraunhofer Institut für ChemischeTechnologie (ICT)Department of Polymer EngineeringJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 12)Dr. Manfred KaiserWIWEB WehrwissenschaftlichesInstitut für Werk-, Explosiv- undBetriebsstoffeAußenstelle Swisttal-HeimerzheimGroßes Cent53913 Swisttal, Germany(Chapter 10)Dr. John KendrickICI TechnologyWilton Research CenterP.O. Box 90Wilton, MiddlesbroughCleveland TS 90 8JE, UK(Chapter 3)
Prof. Dr. Kwang-Joo KimKorea Research Institute of ChemicalTechnologyChemical Engineering DivisonP.O. Box 107, YuseongTaejon 305–600, Korea(Chapter 3)Dr. Horst KrauseFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 1)Dipl.-Ing. Hartmut KröberFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 3, 4)Dr. Ronald S. LeeUniversity of CaliforniaLawrence Livermore NationalLaboratoryP.O. Box 808, L – 282Livermore, CA 94551, USA(Chapter 13)Dr. Stefan LöbbeckeFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 10)Dr. Alexey I. LyamkinKrasnoyarsk State Technical University26, Kirensky yarsk 660074, Russia(Chapter 7)List of ContributorsXXIDipl.-Ing. Irma MikonsaariFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 2, 11)Dr. Rudolf NastkeFraunhofer Institut für AngewandtePolymerforschung (IAP)Geiselbergstraße 6914476 Golm, Germany(Chapter 5). Kirk E. NewmanEnergetic Materials and TechnologyDepartmentNaval Surface Warfare Center,
Indian Head DivisonBldg 457, Manley RoadYorktown, VA 23691–0160, USA(Chapter 12)Dr. Michael NiehausOrica Germany GmbHKaiserstr.53840 Troisdorf, Germany(Chapter 5)Prof. Dr. Ernesto ReverchonDipartimento di IngegneriaChimica e AlimentareUniversita di SalernoVia Ponte Don Melillo84084 Fisciano (SA), Italy(Chapter 4)Prof. Dr. Eberhard SchmidtBergische Universität WuppertalSicherheitstechnik/UmweltschutzRainer-Gruenter-Strasse 2142119 Wuppertal, Germany(Chapter 5)
XXIIList of ContributorsDr. Ferenc SimonResearch Institute of Chemical andProcess EngineeringUniversity of Kaposvár/CampusVeszprémEgyetem u.2, P.O. Box 1258200 Veszprém, Hungary(Chapter 3)Dr. Randall C. SimpsonUniversity of CaliforniaLawrence Livermore NationalLaboratoryP.O. Box 808, L – 282Livermore, CA 94551, USA(Charter 7). Cary B. SkidmoreHigh Explosives Science andTechnologyLos Alamos National LaboratoryP.O. Box 1663, MS C936Los Alamos, NM 87545, USA(Chapter 9)Prof. Dr.-Ing. Ulrich TeipelFraunhofer Institut für ChemischeTechnologie (ICT)Department of Energetic MaterialsParticle TechnologyJoseph-von-Fraunhofer-Strasse 776327 Pfinztal, Germany(Chapter 2, 3, 4, 5, 8, 11, 12). Fred TepperArgonide Corporation291 Power CourtSanford, Florida 32771, USA(Chapter 7)Dr. Joop ter HorstDelft University of TechnologyLaboratory for Process EquipmentLeeghwaterstraat 442628 CA Delft, The Netherlands(Chapter 3)Dr. Simon TorryFuture Systems Technology, QinetiQFort HalsteadSevenoaksKent, TN 14 7BP, UK(Chapter 11)Prof. Dr. Victor ValtsiferInstitute of Technical ChemistryRussian Academy of Science13, LeninPerm 614600, Russia(Chapter 12)Dr. Antoine E.D.M. van der HeijdenTNO Prins Maurits LaboratoryResearch Group Pyrotechnics andEnergetic MaterialsLange Kleiweg 137, P.O. Box 452280 AA Rijswijk, The Netherlands(Chapter 3, 6)Prof. Dr. Alexander VorozhtsovTomsk State University54, BelinskyTomsk 634050, Russia(Chapter 7)Prof. Vladimir E. ZarkoInstitute of Chemical Kinetics andCombustionRussian Academy of Science,Siberian BranchNowosibirsk 630090, Russia(Chapter 7)
版权声明:本文标题:《Energetic Materials》Front Matter 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/free/1709946881h551247.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论