admin 管理员组

文章数量: 887032


2023年12月19日发(作者:recorder什么意思)

sqlite常量的定义:

const

SQLITE_OK = 0; 返回成功

SQLITE_ERROR = 1; SQL错误或错误的数据库

SQLITE_INTERNAL = 2; An internal logic error in SQLite

SQLITE_PERM = 3; 拒绝访问

SQLITE_ABORT = 4; 回调函数请求中断

SQLITE_BUSY = 5; 数据库文件被锁

SQLITE_LOCKED = 6; 数据库中的一个表被锁

SQLITE_NOMEM = 7; 内存分配失败

SQLITE_READONLY = 8; 试图对一个只读数据库进行写操作

SQLITE_INTERRUPT = 9; 由sqlite_interrupt()结束操作

SQLITE_IOERR = 10; 磁盘I/O发生错误

SQLITE_CORRUPT = 11; 数据库磁盘镜像畸形

SQLITE_NOTFOUND = 12; (Internal Only)表或记录不存在

SQLITE_FULL = 13; 数据库满插入失败

SQLITE_CANTOPEN = 14; 不能打开数据库文件

SQLITE_PROTOCOL = 15; 数据库锁定协议错误

SQLITE_EMPTY = 16; (Internal Only)数据库表为空

SQLITE_SCHEMA = 17; 数据库模式改变

SQLITE_TOOBIG = 18; 对一个表数据行过多

SQLITE_CONSTRAINT = 19; 由于约束冲突而中止

SQLITE_MISMATCH = 20; 数据类型不匹配

SQLITE_MISUSE = 21; 数据库错误使用

SQLITE_NOLFS = 22; 使用主机操作系统不支持的特性

SQLITE_AUTH = 23; 非法授权

SQLITE_FORMAT = 24; 辅助数据库格式错误

SQLITE_RANGE = 25; 2nd parameter to sqlite_bind out of range

SQLITE_NOTADB = 26; 打开的不是一个数据库文件

SQLITE_ROW = 100; sqlite_step() has another row ready

SQLITE_DONE = 101; sqlite_step() has finished executing

SQLITE3 使用总结 (ZZ)

Posted by LostMyself

十一月 22, 2008

发信人: lih (未醒), 信区: VC

标 题: SQLITE3 使用总结

发信站: BBS 侏罗纪站 (Wed Jul 11 09:02:02 2007)

前序:

Sqlite3 的确很好用。小巧、速度快。但是因为非微软的产品,帮助文档总觉得不够。这

些天再次研究它,又有一些收获,这里把我对 sqlite3 的研究列出来,以备忘记。

这里要注明,我是一个跨平台专注者,并不喜欢只用 windows 平台。我以前的工作就是为

unix 平台写代码。下面我所写的东西,虽然没有验证,但是我已尽量不使用任何 windo

ws 的东西,只使用标准 C 或标准C++。但是,我没有尝试过在别的系统、别的编译器下编

译,因此下面的叙述如果不正确,则留待以后修改。

下面我的代码仍然用 VC 编写,因为我觉得VC是一个很不错的IDE,可以加快代码编写速度

(例如配合 Vassist )。下面我所说的编译环境,是VC2003。如果读者觉得自己习惯于

unix 下用 vi 编写代码速度较快,可以不用管我的说明,只需要符合自己习惯即可,因为

我用的是标准 C 或 C++ 。不会给任何人带来不便。

一、 版本

从 网站可下载到最新的 sqlite 代码和编译版本。我写此文章时,最新

代码是 3.3.17 版本。

很久没有去下载 sqlite 新代码,因此也不知道 sqlite 变化这么大。以前很多文件,现

在全部合并成一个 sqlite3.c 文件。如果单独用此文件,是挺好的,省去拷贝一堆文件还

担心有没有遗漏。但是也带来一个问题:此文件太大,快接近7万行代码,VC开它整个机器

都慢下来了。如果不需要改它代码,也就不需要打开 sqlite3.c 文件,机器不会慢。但是

,下面我要写通过修改 sqlite 代码完成加密功能,那时候就比较痛苦了。如果个人水平

较高,建议用些简单的编辑器来编辑,例如 UltraEdit 或 Notepad 。速度会快很多。

二、 基本编译

这个不想多说了,在 VC 里新建 dos 控制台空白工程,把 sqlite3.c 和 sqlite3.h 添加

到工程,再新建一个 文件。在里面写:

extern "C"

{

#include "./sqlite3.h"

};

int main( int , char** )

{

return 0;

}

为什么要 extern “C” ?如果问这个问题,我不想说太多,这是C++的基础。要在 C++

里使用一段 C 的代码,必须要用 extern “C” 括起来。C++跟 C虽然语法上有重叠,但

是它们是两个不同的东西,内存里的布局是完全不同的,在C++编译器里不用extern “C”

括起C代码,会导致编译器不知道该如何为 C 代码描述内存布局。

可能在 sqlite3.c 里人家已经把整段代码都 extern “C” 括起来了,但是你遇到一个

.c 文件就自觉的再括一次,也没什么不好。

基本工程就这样建立起来了。编译,可以通过。但是有一堆的 warning。可以不管它。

三、 SQLITE操作入门

sqlite提供的是一些C函数接口,你可以用这些函数操作数据库。通过使用这些接口,传递

一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你操作数据库。

sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库

里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件

。备份这个文件就备份了整个数据库。

sqlite 不需要任何数据库引擎,这意味着如果你需要 sqlite 来保存一些用户数据,甚至

都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver 才能运行,那也太

黑心了)。

下面开始介绍数据库基本操作。

(1) 基本流程

i.1 关键数据结构

sqlite 里最常用到的是 sqlite3 * 类型。从数据库打开开始,sqlite就要为这个类型准

备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个

类型的变量就代表了你要操作的数据库。下面再详细介绍。

i.2 打开数据库

int sqlite3_open( 文件名, sqlite3 ** );

用这个函数开始数据库操作。

需要传入两个参数,一是数据库文件名,比如:c:DongChunGuang_。

文件名不需要一定存在,如果此文件不存在,sqlite 会自动建立它。如果它存在,就尝试

把它当数据库文件来打开。

sqlite3 ** 参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。

函数返回值表示操作是否正确,如果是 SQLITE_OK 则表示操作正常。相关的返回值sqlit

e定义了一些宏。具体这些宏的含义可以参考 sqlite3.h 文件。里面有详细定义(顺便说

一下,sqlite3 的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sq

lite 可以让你学到不少东西)。

下面介绍关闭数据库后,再给一段参考代码。

i.3 关闭数据库

int sqlite3_close(sqlite3 *);

前面如果用 sqlite3_open 开启了一个数据库,结尾时不要忘了用这个函数关闭数

据库。

下面给段简单的代码:

extern "C"

{

#include "./sqlite3.h"

};

int main( int , char** )

{

sqlite3 * db = NULL; //声明sqlite关键结构指针

int result;

//打开数据库

//需要传入 db 这个指针的指针,因为 sqlite3_open 函数要为这个指针分配内存,还要

让db指针指向这个内存区

result = sqlite3_open( “c:Dcg_”, &db );

if( result != SQLITE_OK )

{

//数据库打开失败

return -1;

}

//数据库操作代码

//…

//数据库打开成功

//关闭数据库

sqlite3_close( db );

return 0;

}

这就是一次数据库操作过程。

(2) SQL语句操作

本节介绍如何用sqlite 执行标准 sql 语法。

i.1 执行sql语句

int sqlite3_exec(sqlite3*, const char *sql, sqlite3_callback, void *, char **

errmsg );

这就是执行一条 sql 语句的函数。

第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。

第2个参数const char *sql 是一条 sql 语句,以0结尾。

第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这

个函数。(什么是回调函数,自己找别的资料学习)

第4个参数void * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最

终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NULL。等下我们再看回

调函数的写法,以及这个参数的使用。

第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错

误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%sn

”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通

过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数

外面就可以通过这个 char*得到具体错误提示。

说明:通常,sqlite3_callback 和它后面的 void * 这两个位置都可以填 NULL。填NULL

表示你不需要回调。比如你做 insert 操作,做 delete 操作,就没有必要使用回调。而

当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出

了什么数据。

i.2 exec 的回调

typedef int (*sqlite3_callback)(void*,int,char**, char**);

你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:

//sqlite3的回调函数

// sqlite 每查到一条记录,就调用一次这个回调

int LoadMyInfo( void * para, int n_column, char ** column_value, char **

column_name )

{

//para是你在 sqlite3_exec 里传入的 void * 参数

//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然

后在这里面强制转换成对应的类型(这里面是void*类型,必须强制转换成你的类型才可用

)。然后操作这些数据

//n_column是这一条记录有多少个字段 (即这条记录有多少列)

// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际

上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内

容(用字符串来表示,以0结尾)

//char ** column_name 跟 column_value是对应的,表示这个字段的字段名称

//这里,我不使用 para 参数。忽略它的存在.

int i;

printf( “记录包含 %d 个字段n”, n_column );

for( i = 0 ; i < n_column; i ++ )

{

printf( “字段名:%s ß> 字段值:%sn”, column_name*i+, column_valu

e[i] );

}

printf( “------------------n“ );

return 0;

}

int main( int , char ** )

{

sqlite3 * db;

int result;

char * errmsg = NULL;

result = sqlite3_open( “c:Dcg_”, &db );

if( result != SQLITE_OK )

{

//数据库打开失败

return -1;

}

//数据库操作代码

//创建一个测试表,表名叫 MyTable_1,有2个字段: ID 和 name。其中ID是一个自动增

加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加

result = sqlite3_exec( db, “create table MyTable_1( ID integer primary key au

toincrement, name nvarchar(32) )”, NULL, NULL, errmsg );

if(result != SQLITE_OK )

{

printf( “创建表失败,错误码:%d,错误原因:%sn”, result, errmsg );

}

//插入一些记录

result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘走路’ )

”, 0, 0, errmsg );

if(result != SQLITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%sn”, result, errmsg );

}

result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘骑单车’

)”, 0, 0, errmsg );

if(result != SQLITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%sn”, result, errmsg );

}

result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘坐汽车’

)”, 0, 0, errmsg );

if(result != SQLITE_OK )

{

printf( “插入记录失败,错误码:%d,错误原因:%sn”, result, errmsg );

}

//开始查询数据库

result = sqlite3_exec( db, “select * from MyTable_1”, LoadMyInfo, NULL, errm

sg );

//关闭数据库

sqlite3_close( db );

return 0;

}

通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本操作。

有这些知识,基本上可以应付很多数据库操作了。

i.3 不使用回调查询数据库

上面介绍的 sqlite3_exec 是使用回调来执行 select 操作。还有一个方法可以直接查询

而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很

麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static

的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用

类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前

面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有

多余的隐含的this参数)。

虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlit

e3_get_table 函数做到。

int sqlite3_get_table(sqlite3*, const char *sql, char ***resultp, int *nrow, i

nt *ncolumn, char **errmsg );

第1个参数不再多说,看前面的例子。

第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以0结尾

的char *字符串。

第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)

。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事

第4个参数是查询出多少条记录(即查出多少行)。

第5个参数是多少个字段(多少列)。

第6个参数是错误信息,跟前面一样,这里不多说了。

下面给个简单例子:

int main( int , char ** )

{

sqlite3 * db;

int result;

char * errmsg = NULL;

char **dbResult; //是 char ** 类型,两个*号

int nRow, nColumn;

int i , j;

int index;

result = sqlite3_open( “c:Dcg_”, &db );

if( result != SQLITE_OK )

{

//数据库打开失败

return -1;

}

//数据库操作代码

//假设前面已经创建了 MyTable_1 表

//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去

的就成了 char ***

result = sqlite3_get_table( db, “select * from MyTable_1”, &dbResult, &nRow,

&nColumn, &errmsg );

if( SQLITE_OK == result )

{

//查询成功

index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn

索引开始才是真正的数据

printf( “查到%d条记录n”, nRow );

for( i = 0; i < nRow ; i++ )

{

printf( “第 %d 条记录n”, i+1 );

for( j = 0 ; j < nColumn; j++ )

{

printf( “字段名:%s ß> 字段值:%sn”, dbResult[j], dbRes

ult [index] );

++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1

索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统

的行列表示法)用一个扁平的形式来表示

}

printf( “-------n” );

}

}

//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功

能来释放

sqlite3_free_table( dbResult );

//关闭数据库

sqlite3_close( db );

return 0;

}

到这个例子为止,sqlite3 的常用用法都介绍完了。

用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。

但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进

制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据

(2) 操作二进制

sqlite 操作二进制数据需要用一个辅助的数据类型:sqlite3_stmt * 。

这个数据类型记录了一个“sql语句”。为什么我把 “sql语句” 用双引号引起来?因为

你可以把 sqlite3_stmt * 所表示的内容看成是 sql语句,但是实际上它不是我们所熟知

的sql语句。它是一个已经把sql语句解析了的、用sqlite自己标记记录的内部数据结构。

正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进

制数据插到 sqlite3_stmt 结构里可不能直接 memcpy ,也不能像 std::string 那样用

+ 号。必须用 sqlite 提供的函数来插入。

i.1 写入二进制

下面说写二进制的步骤。

要插入二进制,前提是这个表的字段的类型是 blob 类型。我假设有这么一张表:

create table Tbl_2( ID integer, file_content blob )

首先声明

sqlite3_stmt * stat;

然后,把一个 sql 语句解析到 stat 结构里去:

sqlite3_prepare( db, “insert into Tbl_2( ID, file_content) values( 10, ? )”,

-1, &stat, 0 );

上面的函数完成 sql 语句的解析。第一个参数跟前面一样,是个 sqlite3 * 类型变量,

第二个参数是一个 sql 语句。

这个 sql 语句特别之处在于 values 里面有个 ? 号。在sqlite3_prepare函数里,?号表

示一个未定的值,它的值等下才插入。

第三个参数我写的是-1,这个参数含义是前面 sql 语句的长度。如果小于0,sqlite会自

动计算它的长度(把sql语句当成以0结尾的字符串)。

第四个参数是 sqlite3_stmt 的指针的指针。解析以后的sql语句就放在这个结构里。

第五个参数我也不知道是干什么的。为0就可以了。

如果这个函数执行成功(返回值是 SQLITE_OK 且 stat 不为NULL ),那么下面就可以开

始插入二进制数据。

sqlite3_bind_blob( stat, 1, pdata, (int)(length_of_data_in_bytes), NULL ); //

pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位

这个函数一共有5个参数。

第1个参数:是前面prepare得到的 sqlite3_stmt * 类型变量。

第2个参数:?号的索引。前面prepare的sql语句里有一个?号,假如有多个?号怎么插入?

方法就是改变 bind_blob 函数第2个参数。这个参数我写1,表示这里插入的值要替换 st

at 的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个

bind_blob 语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sq

lite为它取值null。

第3个参数:二进制数据起始指针。

第4个参数:二进制数据的长度,以字节为单位。

第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据

。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NULL,需要释放的内存自

己用代码来释放。

bind完了之后,二进制数据就进入了你的“sql语句”里了。你现在可以把它保存到数据库

里:

int result = sqlite3_step( stat );

通过这个语句,stat 表示的sql语句就被写到了数据库里。

最后,要把 sqlite3_stmt 结构给释放:

sqlite3_finalize( stat ); //把刚才分配的内容析构掉

i.2 读出二进制

下面说读二进制的步骤。

跟前面一样,先声明 sqlite3_stmt * 类型变量:

sqlite3_stmt * stat;

然后,把一个 sql 语句解析到 stat 结构里去:

sqlite3_prepare( db, “select * from Tbl_2”, -1, &stat, 0 );

当 prepare 成功之后(返回值是 SQLITE_OK ),开始查询数据。

int result = sqlite3_step( stat );

这一句的返回值是 SQLITE_ROW 时表示成功(不是 SQLITE_OK )。

你可以循环执行 sqlite3_step 函数,一次 step 查询出一条记录。直到返回值不为 SQL

ITE_ROW 时表示查询结束。

然后开始获取第一个字段:ID 的值。ID是个整数,用下面这个语句获取它的值:

int stat, 0 ); //第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字

段是第一个字段,因此这里我填0

下面开始获取 file_content 的值,因为 file_content 是二进制,因此我需要得到它的

指针,还有它的长度:

const void * pFileContent = sqlite3_column_blob( stat, 1 );

int len = sqlite3_column_bytes( stat, 1 );

这样就得到了二进制的值。

把 pFileContent 的内容保存出来之后,不要忘了释放 sqlite3_stmt 结构:

sqlite3_finalize( stat ); //把刚才分配的内容析构掉

i.3 重复使用 sqlite3_stmt 结构

如果你需要重复使用 sqlite3_prepare 解析好的 sqlite3_stmt 结构,需要用函数: sq

lite3_reset。

result = sqlite3_reset(stat);

这样, stat 结构又成为 sqlite3_prepare 完成时的状态,你可以重新为它 bind 内容。

网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为

我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出

的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直

接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlit

e3.c 文件,可以直接参考或取下来使用。

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_SQLITE_CRYPT_FUNC_

#define DCG_SQLITE_CRYPT_FUNC_

/***********

董淳光写的 SQLITE 加密关键函数库

***********/

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData, unsigned int data_len, const char

* key, unsigned int len_of_key );

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData, unsigned int data_len, const cha

r * key, unsigned int len_of_key );

#endif

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func( unsigned char * pData, unsigned int data_len, const char

* key, unsigned int len_of_key )

{

return 0;

}

/***********

关键解密函数

***********/

int My_DeEncrypt_Func( unsigned char * pData, unsigned int data_len, const cha

r * key, unsigned int len_of_key )

{

return 0;

}

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、

数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一

些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不

是碰巧,而是 Sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define SQLITE_DEFAULT_PAGE_SIZE 1024

你可以改动这个值,不过还是建议没有必要不要去改它。

上面写了两个扩展函数,如何把扩展函数跟 Sqlite 挂接起来,这个过程说起来比较麻烦

。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

#ifdef SQLITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在 sqlite3 最后关闭时释放一些内存

***********/

void sqlite3pager_free_codecarg(void *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要

插入这个函数调用。所以要提前声明。

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不

是声明代码)。

实现代码里一开始是:

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT

/* A malloc() cannot fail in sqlite3ThreadData() as one or more calls to

** malloc() must have already been made by this thread before it gets

** to this point. This means the ThreadData must have been allocated already

** so that can be set.

*/

ThreadData *pTsd = sqlite3ThreadData();

assert( pPager );

assert( pTsd && pTsd->nAlloc );

#endif

需要在这部分后面紧接着插入:

#ifdef SQLITE_HAS_CODEC

sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是

叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”

是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”

、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本

对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所

以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是

新蹦出来的,而是老版本函数改名得到的。

最后,往sqlite3.c 文件下找。找到最后一行:

/************** End of main.c ************************************************

/

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,

即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密

钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为m

d5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是

我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己

写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以

使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数

里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内

存。

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前

面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。

i.3 加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 SQLITE_HAS_CODEC 宏,

还得修改你的数据库调用函数。

前面提到过,要开始一个数据库操作,必须先 sqlite3_open 。

加解密过程就在 sqlite3_open 后面操作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

int i;

//添加、使用密码

i = sqlite3_key( db, "dcg", 3 );

//修改密码

i = sqlite3_rekey( db, "dcg", 0 );

用 sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据

库)。

第2个参数是密钥。

第3个参数是密钥长度。

用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sq

lite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何操作都会得到一个返

回值:SQLITE_NOTADB,并且得到错误提示:“file is encrypted or is not a databas

e”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key

设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_reke

y 来修改密码时会得到 SQLITE_NOTADB 返回值。

如果你需要清空密码,可以使用:

//修改密码

i = sqlite3_rekey( db, NULL, 0 );

来完成密码清空功能。

i.4 sqlite3.c 最后添加代码段

/***

董淳光定义的加密函数

***/

#ifdef SQLITE_HAS_CODEC

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedef struct _CryptBlock

{

BYTE* ReadKey; // 读数据库和写入事务的密钥

BYTE* WriteKey; // 写入数据库的密钥

int PageSize; // 页的大小

BYTE* Data;

} CryptBlock, *LPCryptBlock;

#ifndef DB_KEY_LENGTH_BYTE /*密钥长度*/

#define DB_KEY_LENGTH_BYTE 16 /*密钥长度*/

#endif

#ifndef DB_KEY_PADDING /*密钥位数不足时补充的字符*/

#define DB_KEY_PADDING 0x33 /*密钥位数不足时补充的字符*/

#endif

/*** 下面是编译时提示缺少的函数 ***/

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey 函数里实现 **/

void sqlite3CodecGetKey(sqlite3* db, int nDB, void** Key, int* nKey)

{

return ;

}

/*被sqlite 和 sqlite3_key_interop 调用, 附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db, int nDb, const void *pKey, int nKeyLen);

/**

这个函数好像是 sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

void sqlite3_activate_see(const char* right )

{

return;

}

int sqlite3_key(sqlite3 *db, const void *pKey, int nKey);

int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey);

/***

下面是上面的函数的辅助处理函数

***/

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

static unsigned char * DeriveKey(const void *pKey, int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey, Pager *pager, LPCryp

tBlock pExisting);

//加密/解密函数, 被pager调用

void * sqlite3Codec(void *pArg, unsigned char *data, Pgno nPageNum, int nMode)

;

//设置密码函数

int __stdcall sqlite3_key_interop(sqlite3 *db, const void *pKey, int nKeySize)

;

// 修改密码函数

int __stdcall sqlite3_rekey_interop(sqlite3 *db, const void *pKey, int nKeySiz

e);

//销毁一个加密块及相关的缓冲区,密钥.

static void DestroyCryptBlock(LPCryptBlock pBlock);

static void * sqlite3pager_get_codecarg(Pager *pPager);

void sqlite3pager_set_codec(Pager *pPager,void *(*xCodec)(void*,void*,Pgno,int

),void *pCodecArg );

//加密/解密函数, 被pager调用

void * sqlite3Codec(void *pArg, unsigned char *data, Pgno nPageNum, int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsigned int dwPageSize = 0;

if (!pBlock) return data;

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

PgHdr *pageHeader;

pageHeader = DATA_TO_PGHDR(data);

if (pageHeader->pPager->pageSize != pBlock->PageSize)

{

CreateCryptBlock(0, pageHeader->pPager, pBlock);

}

}

switch(nMode)

{

case 0: // Undo a "case 7" journal file encryption

case 2: //重载一个页

case 3: //载入一个页

if (!pBlock->ReadKey) break;

dwPageSize = pBlock->PageSize;

My_DeEncrypt_Func(data, dwPageSize, pBlock->ReadKey, DB_KEY_LENGTH_BYTE )

; /*调用我的解密函数*/

break;

case 6: //加密一个主数据库文件的页

if (!pBlock->WriteKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET, data, pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

dwPageSize = pBlock->PageSize;

My_Encrypt_Func(data , dwPageSize, pBlock->WriteKey, DB_KEY_LENGTH_BYTE )

; /*调用我的加密函数*/

break;

case 7: //加密事务文件的页

/*在正常环境下, 读密钥和写密钥相同. 当数据库是被重新加密的,读密钥和写密钥

未必相同.

回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库

的读密钥,

这是为了保证与读取原始数据的密钥相同.

*/

if (!pBlock->ReadKey) break;

memcpy(pBlock->Data + CRYPT_OFFSET, data, pBlock->PageSize);

data = pBlock->Data + CRYPT_OFFSET;

dwPageSize = pBlock->PageSize;

My_Encrypt_Func( data, dwPageSize, pBlock->ReadKey, DB_KEY_LENGTH_BYTE );

/*调用我的加密函数*/

break;

}

return data;

}

//销毁一个加密块及相关的缓冲区,密钥.

static void DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

sqliteFree(pBlock->ReadKey);

}

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){

sqliteFree(pBlock->WriteKey);

}

if(pBlock->Data){

sqliteFree(pBlock->Data);

}

//释放加密块.

sqliteFree(pBlock);

}

static void * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NULL;

}

// 从用户提供的缓冲区中得到一个加密密钥

static unsigned char * DeriveKey(const void *pKey, int nKeyLen)

{

unsigned char * hKey = NULL;

int j;

if( pKey == NULL || nKeyLen == 0 )

{

return NULL;

}

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NULL )

{

return NULL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

memcpy( hKey, pKey, nKeyLen ); //先拷贝得到密钥前面的部分

j = DB_KEY_LENGTH_BYTE - nKeyLen;

//补充密钥后面的部分

memset( hKey + nKeyLen, DB_KEY_PADDING, j );

}

else

{ //密钥位数已经足够,直接把密钥取过来

memcpy( hKey, pKey, DB_KEY_LENGTH_BYTE );

}

return hKey;

}

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsigned char* hKey, Pager *pager, LPCryp

tBlock pExisting)

{

LPCryptBlock pBlock;

if (!pExisting) //创建新加密块

{

pBlock = sqliteMalloc(sizeof(CryptBlock));

memset(pBlock, 0, sizeof(CryptBlock));

pBlock->ReadKey = hKey;

pBlock->WriteKey = hKey;

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFS

ET);

}

else //更新存在的加密块

{

pBlock = pExisting;

if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){

sqliteFree(pBlock->Data);

pBlock->PageSize = pager->pageSize;

pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize + CRYPT

_OFFSET);

}

}

memset(pBlock->Data, 0, pBlock->PageSize + CRYPT_OFFSET);

return pBlock;

}

/*

** Set the codec for this pager

*/

void sqlite3pager_set_codec(

Pager *pPager,

void *(*xCodec)(void*,void*,Pgno,int),

void *pCodecArg

)

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db, const void *pKey, int nKey)

{

return sqlite3_key_interop(db, pKey, nKey);

}

int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey)

{

return sqlite3_rekey_interop(db, pKey, nKey);

}

/*被sqlite 和 sqlite3_key_interop 调用, 附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db, int nDb, const void *pKey, int nKeyLen)

{

int rc = SQLITE_ERROR;

unsigned char* hKey = 0;

//如果没有指定密匙,可能标识用了主数据库的加密或没加密.

if (!pKey || !nKeyLen)

{

if (!nDb)

{

return SQLITE_OK; //主数据库, 没有指定密钥所以没有加密.

}

else //附加数据库,使用主数据库的密钥.

{

//获取主数据库的加密块并复制密钥给附加数据库使用

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqli

te3BtreePager(db->aDb[0].pBt));

if (!pBlock) return SQLITE_OK; //主数据库没有加密

if (!pBlock->ReadKey) return SQLITE_OK; //没有加密

memcpy(pBlock->ReadKey, &hKey, 16);

}

}

else //用户提供了密码,从中创建密钥.

{

hKey = DeriveKey(pKey, nKeyLen);

}

//创建一个新的加密块,并将解码器指向新的附加数据库.

if (hKey)

{

LPCryptBlock pBlock = CreateCryptBlock(hKey, sqlite3BtreePager(db->aDb

[nDb].pBt), NULL);

sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt), sqlite3Cod

ec, pBlock);

rc = SQLITE_OK;

}

return rc;

}

// Changes the encryption key for an existing database.

int __stdcall sqlite3_rekey_interop(sqlite3 *db, const void *pKey, int nKeySiz

e)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);

unsigned char * hKey = DeriveKey(pKey, nKeySize);

int rc = SQLITE_ERROR;

if (!pBlock && !hKey) return SQLITE_OK;

//重新加密一个数据库,改变pager的写密钥, 读密钥依旧保留.

if (!pBlock) //加密一个未加密的数据库

{

pBlock = CreateCryptBlock(hKey, p, NULL);

pBlock->ReadKey = 0; // 原始数据库未加密

sqlite3pager_set_codec(sqlite3BtreePager(pbt), sqlite3Codec, pBlock);

}

else // 改变已加密数据库的写密钥

{

pBlock->WriteKey = hKey;

}

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt, 1);

if (!rc)

{

// 用新密钥重写所有的页到数据库。

Pgno nPage = sqlite3PagerPagecount(p);

Pgno nSkip = PAGER_MJ_PGNO(p);

void *pPage;

Pgno n;

for(n = 1; rc == SQLITE_OK && n <= nPage; n ++)

{

if (n == nSkip) continue;

rc = sqlite3PagerGet(p, n, &pPage);

if(!rc)

{

rc = sqlite3PagerWrite(pPage);

sqlite3PagerUnref(pPage);

}

}

}

// 如果成功,提交事务。

if (!rc)

{

rc = sqlite3BtreeCommit(pbt);

}

// 如果失败,回滚。

if (rc)

{

sqlite3BtreeRollback(pbt);

}

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

if (pBlock->ReadKey)

{

sqliteFree(pBlock->ReadKey);

}

pBlock->ReadKey = pBlock->WriteKey;

}

else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

if (pBlock->WriteKey)

{

sqliteFree(pBlock->WriteKey);

}

pBlock->WriteKey = pBlock->ReadKey;

}

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

sqlite3pager_set_codec(p, NULL, NULL);

DestroyCryptBlock(pBlock);

}

return rc;

}

/***

下面是加密函数的主体

***/

int __stdcall sqlite3_key_interop(sqlite3 *db, const void *pKey, int nKeySize)

{

return sqlite3CodecAttach(db, 0, pKey, nKeySize);

}

// 释放与一个页相关的加密块

void sqlite3pager_free_codecarg(void *pArg)

{

if (pArg)

DestroyCryptBlock((LPCryptBlock)pArg);

}

#endif //#ifdef SQLITE_HAS_CODEC

五、 后记

写此教程,可不是一个累字能解释。

但是我还是觉得欣慰的,因为我很久以前就想写 sqlite 的教程,一来自己备忘,二而已

造福大众,大家不用再走弯路。

本人第一次写教程,不足的地方请大家指出。

本文可随意转载、修改、引用。但无论是转载、修改、引用,都请附带我的名字:董淳光

。以示对我劳动的肯定


本文标签: 数据库 函数 密钥 加密 代码