admin 管理员组

文章数量: 887021

神经网络参数如何确定

神经网络各个网络参数设定原则:①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。

如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1BP神经网络模型。在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。

②、初始权值的确定 初始权值是不应完全相等的一组值。已经证明,即便确定 存在一组互不相等的使系统误差更小的权值,如果所设Wji的的初始值彼此相等,它们将在学习过程中始终保持相等。

故而,在程序中,我们设计了一个随机发生器程序,产生一组一0.5~+0.5的随机数,作为网络的初始权值。

③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。

因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。该值一般取0.9。④、动态参数 动态系数的选择也是经验性的,一般取0.6~0.8。

⑤、允许误差 一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。⑥、迭代次数 一般取1000次。

由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。⑦、Sigmoid参数该参数调整神经元激励函数形式,一般取0.9~1.0之间。⑧、数据转换。

在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1.生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2.建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3.算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

谷歌人工智能写作项目:神经网络伪原创

深度学习 对硬件的要求

之前热衷于学习理论知识,目前想跑代码了发现不知道从何下手,自己电脑上搭建的平台基本就是个摆设,因为跑不起来呀文案狗。今天我们就来看看想做深度学习应该怎么下手。

首先了解下基础知识:1、深度学习用cpu训练和用gpu训练的区别(1)CPU主要用于串行运算;而GPU则是大规模并行运算。由于深度学习中样本量巨大,参数量也很大,所以GPU的作用就是加速网络运算。

(2)CPU算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。而目前GPU运算主要集中在矩阵乘法和卷积上,其他的逻辑运算速度并没有CPU快。

目前来讲有三种训练模型的方式:1.自己配置一个“本地服务器”,俗称高配的电脑。这个选择一般是台式机,因为笔记本的“高配”实在是太昂贵了,同一个价格可以买到比笔记本好很多的配置。

如果是长期使用,需要长期从事深度学习领域的研究,这个选择还是比较好的,比较自由。①预算一万以内的机器学习台式机/主机配置:②从李飞飞的课程里,可以看到她的电脑配置,这个配置是机器学习的基本设置。

内存:4X8G显示卡:两个NVGTX1070硬盘:HDD一个,SSD两个③配置主机需要了解的参数(在上一篇博客中已经详细介绍了各个参数的含义):GPU:一个好的GPU可以将你的训练时间从几周缩减成几天,所以选GPU一定要非常慎重。

可以参看GPU天梯榜,都是一些比较新的型号具有很强的性能。在英伟达产品系列中,有消费领域的GeForce系列,有专业绘图领域的Quadro系列,有高性能计算领域的Tesla系列,如何选择?

有论文研究,太高的精度对于深度学习的错误率是没有提升的,而且大部分的环境框架都只支持单精度,所以双精度浮点计算是不必要,Tesla系列都去掉了。

从显卡效能的指标看,CUDA核心数要多,GPU频率要快,显存要大,带宽要高。这样,最新TitanX算是价格便宜量又足的选择。CPU:总的来说,你需要选择一个好的GPU,一个较好的CPU。

作为一个高速的串行处理器,常用来作为“控制器”使用,用来

本文标签: 神经网络 电脑配置 cpu