admin 管理员组文章数量: 887021
前言
公司需要开发的新产品涉及到AI相关,需要搭建AI深度学习开发环境,笔者使用本地VS Code+远程jupyter服务器方便调试代码。
Win10使用VM安装Linux系统
为了方便调试github上面的源码,我选择搭建Linux系统的开发环境,笔者虚拟机安装使用的是CentOS7.9系统,不想安装虚拟机也可以在win10系统上直接搭建
win10 x64
VMware 16
清华镜像站下载CentOS7.9 DVD 镜像,千兆网速1分钟就下载好了。
使用VM16安装下载来的iso文件,简易安装系统后发现复制粘贴文件有点问题,重装了VM Tool也没有解决,为了节约时间笔者就没继续研究,打开服务器SSH,使用【 FinalShell】或【xshell,xftp】软件解决文件复制问题。
1.修改pip镜像源方便后续安装
pip下载国外镜像速度太慢,通过修改为国内镜像源来提高速度
全局设置其他镜像源,只要执行一条就行
#pip单次修改镜像源用-i 参数来指定安装包的来源,下面这行是用清华源安装numpy
pip install numpy -i https://pypi.tuna.tsinghua.edu/simple
#全局设置清华源
pip config set global.index-url https://pypi.tuna.tsinghua.edu/simple
#中科大镜像源
pip config set global.index-url https://mirrors.ustc.edu/pypi/web/simple
#阿里云镜像源
pip config set global.index-url https://mirrors.aliyun/pypi/simple/
#恢复默认源(需要的包版本找不到时使用)
pip config set global.index-url https://pypi.python/simple
2.安装Anaconda
笔者是跟着这篇文章安装,后续再修改详细的版本
如何在Linux服务器上安装Anaconda(超详细)
安装后修改默认路径,防止C盘爆满
anaconda虚拟环境默认路径的更改_anaconda修改默认保存路径_lhx滴xjq的博客-CSDN博客
修改默认环境和默认路径方便使用_anaconda prompt怎么切换环境_菜鸡不叫的博客-CSDN博客
conda anaconda切换清华源_anaconda更换清华源_watermelonoops的博客-CSDN博客
创建环境
conda create -n pytorch python=3.7.16 (pytorch 是我自己取的名字)
激活指定环境
conda activate [环境名,默认为空着是base]
查看当前已有环境
conda info --envs
1.查看已安装的内容
conda info -e
2.激活环境
conda activate pytorch
3.查看conda版本
conda --version
4.更新
conda update jupyter_client jupyter_core
5.删除环境
离开激活的环境
conda deactivate
6.列出所有的环境
conda env list
7.找到需要删除的环境后,删除xxx(为需要删除的名称)
conda env remove -n xxx
8.更新虚拟环境中的python到指定版本
conda install -c anaconda python=3.8
3.安装jupyter notebook
执行
pip install jupyter notebook
若返回以下信息说明安装完成
Inatalling collected packages: jupyter
Successfully installed jupyter-1.0.0
更换默认执行环境
- jupyter notebook访问的时候
- 默认使用了anaconda的base环境
- 下面命令切换到名为pytorch的虚拟环境,替换里面两个pytorch即可切换其他环境
python -m ipykernel install --user --name pytorch --display-name "pytorch"
安装插件(可选)
pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
4.jupyter服务器配置远程访问
第1步
首先我们要生成一个JupyterNotebook的配置文件:执行conda activate激活环境后打开Anaconda Prompt,输入
jupyter notebook --generate-config
记住这个地址,我们一会儿需要按照这个地址找到配置文件(就是这个jupyter_notebook_config.py)
第2步
同样还是在Anaconda Prompt,我们输入
jupyter notebook password
然后就会返回一个Enter password(输入密码)和Verify password(确认密码)给你填,就和我们平时注册账号是一个样的。我们填入密码后,会出现下面的信息:Wrote hashed password to /Users/Admin/.jupyter/jupyter_notebook_config.json。复制出里面的密钥像这样
argon2:
a
r
g
o
n
2
i
d
argon2id
argon2idv=19$m=10240,t=10,p=8$2GNJzkO1dY4ZgK9xaxAGYw$2+X5CTkzAEFlw+JS1I8j5rMopIjOhiKoZLtER2FernQ
第3步
打开第1步生成的配置文件jupyter_notebook_config.py(打开方式还是选择记事本/txt),在文件最后加上这几行:
c.NotebookApp.ip = '0.0.0.0' #填入0.0.0.0或*表示所有网络可以访问
c.NotebookApp.port = 8888 #可以修改为自己需要的端口
#下面这边是手动配置token,通过 http://127.0.0.1:8888/?token=aef9a514fa484b83aa4554371024ebc5b50bbed25c2521ab 能直接访问,vs code使用远程内核必须输入这个链接
c.NotebookApp.token = 'aef9a514fa484b83aa4554371024ebc5b50bbed25c2521ab'
c.NotebookApp.notebook_dir = '/var/anaconda/notebook'
c.NotebookApp.allow_root = True
c.NotebookApp.use_redirect_file = False
c.NotebookApp.open_browser = False
#c.NotebookApp.allow_origin_pat = 'https://.*vscode-cdn\' #vs code无法访问时添加
注意,下面的命令不要一条执行,否则看不到输出信息
#刷新服务
systemctl daemon-reload
#启动
systemctl start jupyter_notebook
#查看状态
systemctl status jupyter_notebook
局域网或外网访问jupytor服务器需要开启端口
1、检查防火墙是否开启(需要开启防火墙)
查看防火墙状态命令:
systemctl status firewalld
启动防火墙命令:
systemctl start firewalld
关闭防火墙命令:
systemctl stop firewalld
2、开放指定端口
开放端口命令:
firewall-cmd --zone=public --add-port=5011/tcp --permanent
命令含义:–zone #作用域
–add-port=1935/tcp #添加端口,格式为:端口/通讯协议
–permanent #永久生效,没有此参数重启后失效
3、重启防火墙
重启防火墙命令:firewall-cmd --reload
4、查询端口是否开启
查询端口命令:firewall-cmd --query-port=5011/tcp
返回yes 表示已开启 no表示未开启
VS Code 远程使用jupyter服务,需要带上token口令,格式:
http://192.168.1.146:8888/?token=aef9a514fa484b83aa4554371024ebc5b50bbed25c2521ab
pip执行任何命令都报错是工具出现了问题,直接重新安装pip工具就好了
3.7(不包含3.7)以下版本
wget https://bootstrap.pypa.io/pip/3.6/get-pip.py
sudo python get-pip.py
3.7以上版本
wget https://bootstrap.pypa.io/get-pip.py
sudo python get-pip.py # 运行安装脚本
windows下 【python】ffmpeg包的安装配置
pip install ffmpeg后不能直接使用,必须安装下载ffmpeg应用软件,并将其路径加入到电脑的环境变量中。参考。
5.检查环境是否配置正确
虚拟环境下执行
python #进入python解释器
import torch
torch.cuda.is_available()
如果返回false说明没有配置对,执行命令时不会调用GPU,需要安装cuda和对应的torch版本:
conda list 查看当前环境的包
删除现有的torch
pip uninstall torch torchvision
torch.cuda.is_available()返回false——解决办法
安装 真·GPU版 Pytorch
pytorch安装GPU版本 (Cuda12.1)
解决pytorch检测不到cuda的问题/pytorch找不到GPU_深度学习_薛猫颚的腚-DevPress官方社区
报错找不到’_cffi_backend’模块ModuleNotFoundError: No module named ‘_cffi_backend’
pip -vvv install --upgrade --force-reinstall cffi
AutoDL使用
设置github等学术加速
source /etc/network_turbo
版权声明:本文标题:安装搭建AI开发环境(保姆级教程) 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1726333284h938940.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论