admin 管理员组文章数量: 887018
2024年4月12日发(作者:仓库连不上maven)
Cell,Vol.116,281–297,January23,2004,Copyright2004byCellPress
MicroRNAs:Genomics,
Biogenesis,Mechanism,andFunction
Review
1,2,
*
1
WhiteheadInstituteforBiomedicalResearch
9CambridgeCenter
Cambridge,Massachusetts02142
2
DepartmentofBiology
MassachusettsInstituteofTechnology
Cambridge,Massachusetts02139
MicroRNAs(miRNAs)areendogenousف22ntRNAs
thatcanplayimportantregulatoryrolesinanimalsand
plantsbytargetingmRNAsforcleavageortransla-
ghtheyescapednoticeuntil
relativelyrecently,miRNAscompriseoneofthemore
abundantclassesofgeneregulatorymoleculesin
multicellularorganismsandlikelyinfluencetheoutput
ofmanyprotein-codinggenes.
Inaninvestigationinspiringforbothitsperseverance
anditsscientificinsight,VictorAmbrosandcolleagues,
RosalindLeeandRhondaFeinbaum,discoveredthat
lin-4,s
larvaldevelopment,doesnotcodeforaproteinbut
insteadproducesapairofsmallRNAs(Leeetal.,1993).
OneRNAisapproximately22ntinlength,andtheother
isapproximately61nt;thelongeronewaspredictedto
foldintoastemloopproposedtobetheprecursorof
rosandRuvkunlabsthenno-
ticedthattheselin-4RNAshadantisensecomplemen-
taritytomultiplesitesinthe3ЈUTRofthelin-14gene
(Leeetal.,1993;Wightmanetal.,1993).Thiscomple-
mentarityfellinaregionofthe3ЈUTRpreviouslypro-
posedtomediatetherepressionoflin-14bythelin-4
geneproduct(Wightmanetal.,1991).TheRuvkunlab
wentontodemonstratetheimportanceofthesecom-
plementarysitesforregulationoflin-14bylin-4,showing
alsothatthisregulationsubstantiallyreducesthe
amountofLIN-14proteinwithoutnoticeablechange
er,thesediscoveries
supportedamodelinwhichthelin-4RNAspairtothe
lin-143ЈUTRtospecifytranslationalrepressionofthe
lin-14messageaspartoftheregulatorypathwaythat
triggersthetransitionfromcelldivisionsofthefirstlarval
stagetothoseofthesecond(Leeetal.,1993;Wightman
etal.,1993).
Theshorterlin-4RNAisnowrecognizedasthefound-
ingmemberofanabundantclassoftinyregulatoryRNAs
calledmicroRNAsormiRNAs(Lagos-Quintanaetal.,
2001;Lauetal.,2001;LeeandAmbros,2001).The
breadthandimportanceofmiRNA-directedgeneregula-
tionarecomingintofocusasmoremiRNAsandtheir
-
centlydiscoveredmiRNAfunctionsincludecontrolof
cellproliferation,celldeath,andfatmetabolisminflies
(Brenneckeetal.,2003;Xuetal.,2003),neuronalpat-
terninginnematodes(JohnstonandHobert,2003),mod-
*Correspondence:dbartel@
ulationofhematopoieticlineagedifferentiationinmam-
mals(Chenetal.,2004),andcontrolofleafandflower
developmentinplants(AukermanandSakai,2003;
Chen,2003;Emeryetal.,2003;Palatniketal.,2003).
Computationalapproachesforfindingmessagescon-
trolledbymiRNAsindicatethattheseexamplesrepre-
sentaverysmallfractionofthetotal(Rhoadesetal.,
2002;Enrightetal.,2003;Lewisetal.,2003;Starket
al.,2003).
Thisreviewhighlightswhathasbeenlearnedabout
miRNAsinthedecadesincethereportofthelin-4RNA
ortopicsdiscussed
aremiRNAgenomics,miRNAbiogenesis,miRNAregula-
torymechanisms,andtherolesofmiRNAsingeneregu-
latorypathways.
Genomics:ThemiRNAGenes
Forsevenyearsafterthediscoveryofthelin-4RNA,the
genomicsofthistypeoftinyregulatoryRNAappeared
simple:therewasnoevidenceforlin-4-likeRNAsbe-
yondnematodesandnosignofanysimilarnoncoding
lchangeduponthedis-
coverythatlet-7,shetero-
chronicpathway,encodedasecondف22ntregulatory
-7RNAactstopromotethetransitionfrom
late-larvaltoadultcellfatesinthesamewaythatthe
lin-4RNAactsearlierindevelopmenttopromotethe
progressionfromthefirstlarvalstagetothesecond
(Reinhartetal.,2000;Slacketal.,2000).Furthermore,
homologsofthelet-7geneweresoonidentifiedinthe
humanandflygenomes,andlet-7RNAitselfwasde-
tectedinhuman,Drosophila,andelevenotherbilateral
animals(Pasquinellietal.,2000).
Becauseoftheircommonrolesincontrollingthetim-
ingofdevelopmentaltransitions,thelin-4andlet-7
RNAsweredubbedsmalltemporalRNAs(stRNAs),with
anticipationthatadditionalregulatoryRNAsofthistype
wouldbediscovered(Pasquinellietal.,2000).Indeed,
lessthanoneyearlater,threelabscloningsmallRNAs
fromflies,worms,andhumancellsreportedatotalof
overonehundredadditionalgenesfortinynoncoding
RNAs,approximately20newgenesinDrosophila,ap-
proximately30inhuman,andapproximately60in
worms(Lagos-Quintanaetal.,2001;Lauetal.,2001;
LeeandAmbros,2001).TheRNAproductsofthese
genesresembledthelin-4andlet-7stRNAsinthatthey
wereف22ntendogenouslyexpressedRNAs,potentially
processedfromonearmofastemloopprecursor(Figure
1),andtheyweregenerallyconservedinevolution—
somequitebroadly,othersonlyinmorecloselyrelated
ike
lin-4andlet-7RNAs,manyofthenewlyidentifiedف22
ntRNAswerenotexpressedindistinctstagesofdevel-
opmentandinsteadweremorelikelytobeexpressed
etermmicroRNAwas
usedtorefertothestRNAsandalltheothertinyRNAs
withsimilarfeaturesbutunknownfunctions(Lagos-
Quintanaetal.,2001;Lauetal.,2001;LeeandAmbros,
2001).Intensifiedcloningeffortshaverevealednumer-
Cell
282
esofMetazoanmiRNAs
Shownarepredictedstemloopsinvolvingthe
maturemiRNAs(red)andflankingsequence.
ThemiRNAs*(blue)arealsoshownincases
wheretheyhavebeenexperimentallyidenti-
fied(Limetal.,2003a).
(A)Predictedstemloopsofthefounding
miRNAs,lin-4andlet-7RNAs(Leeetal.,1993;
Reinhartetal.,2000).Theprecisesequences
ofthematuremiRNAsweredefinedbyclon-
ing(Lauetal.,2001).-
gansstemloops,butclosehomologsofboth
havebeenfoundinfliesandmammals(Pas-
quinellietal.,2000;Lagos-Quintanaetal.,
2001,2002).
(B)ExamplesofmiRNAsfromothermetazoan
genes,mir-1,mir-34,re
sstemloops,butclosehomo-
logsofthesemiRNAshavebeenfoundinflies
andmammals(Lagos-Quintanaetal.,2001,
2002;Lauetal.,2001;LeeandAmbros,2001).
(C)ExamplesofmiRNAsfromplantgenes,
MIR165a,MIR172a2,re
Arabidopsisstemloops,butclosehomologs
ofthesemiRNAshavebeenfoundinriceand
otherplants(Parketal.,2002;Reinhartetal.,
2002;Palatniketal.,2003).
ousadditionalmiRNAgenesinmammals,fish,worms,
andflies(Lagos-Quintanaetal.,2002,2003;Mourelatos
etal.,2002;Ambrosetal.,2003b;Aravinetal.,2003;
Dostieetal.,2003;Houbaviyetal.,2003;Kimetal.,
2003;Limetal.,2003a,2003b;Michaeletal.,2003).A
registryhasbeensetuptocatalogthemiRNAsand
facilitatethenamingofnewlyidentifiedgenes(Griffiths-
Jones,2004).
slin-4andlet-7,mostmiRNAgenes
comefromregionsofthegenomequitedistantfrom
previouslyannotatedgenes,implyingthattheyderive
fromindependenttranscriptionunits(Lagos-Quintana
etal.,2001;Lauetal.,2001;LeeandAmbros,2001).
Nonetheless,,aboutaquarterof
thehumanmiRNAgenes)areintheintronsofpre-
repreferentiallyinthesameorientation
asthepredictedmRNAs,suggestingthatmostofthese
miRNAsarenottranscribedfromtheirownpromoters
butareinsteadprocessedfromtheintrons,asseenalso
formanysnoRNAs(Aravinetal.,2003;Lagos-Quintana
etal.,2003;Laietal.,2003;Limetal.,2003a).This
arrangementprovidesaconvenientmechanismforthe
-
latoryscenariosareeasytoimagineinwhichsuchcoor-
dinateexpressioncouldbeuseful,whichwouldexplain
theconservedrelationshipsbetweenmiRNAsandhost
ingexampleofthisconservationinvolves
mir-7,foundintheintronofhnRNPKinbothinsects
andmammals(Aravinetal.,2003).
OthermiRNAgenesareclusteredinthegenomewith
anarrangementandexpressionpatternimplyingtran-
scriptionasamulti-cistronicprimarytranscript(Lagos-
Quintanaetal.,2001;Lauetal.,2001).Althoughthe
majorityofwormandhumanmiRNAgenesareisolated
andnotclustered(Limetal.,2003a,2003b),overhalf
oftheknownDrosophilamiRNAsareclustered(Aravin
etal.,2003).ThemiRNAswithinagenomicclusterare
often,thoughnotalways,relatedtoeachother;and
relatedmiRNAsaresometimesbutnotalwaysclustered
(Lagos-Quintanaetal.,2001;Lauetal.,2001).Orthologs
slin-4andlet-7areclusteredintheflyand
humangenomesandarecoexpressed,sometimesfrom
thesameprimarytranscript,leadingtotheideathatthe
genomicseparationoflin-4fromlet-7innematodes
mightbeuniquetothewormlineage(Aravinetal.,2003;
Bashirullahetal.,2003;Sempereetal.,2003).Thisexam-
Review
283
pleillustratesthepossibilitythatevenincaseswhere
clusteredgeneshavenoapparentsequencehomology,
theymaysharefunctionalrelationships.
Someofthemoreinterestinggenomiclocationsof
mir-10geneliesintheAntennapediacomplexofinsects
andintheorthologouslocationsintwoHoxclustersof
mammals,whereasthemir-iab-4geneiswithinthein-
sectBithoraxcluster(Aravinetal.,2003;Lagos-
Quintanaetal.,2003).Inlightoftherolesofothergenes
oftheHoxclusters,theHoxmiRNAsareespeciallygood
candidatesforhavinginterestingfunctionsinanimal
nterestinglociincludethemir-15a-
mir-16cluster,whichfallswithinaregionofhumanchro-
mosome13thoughttoharboratumorsuppressorgene
becauseitisthesiteofthemostcommonstructural
aberrationsinbothmantlecelllymphomaandBcell
chroniclymphocyticleukemia(Lagos-Quintanaetal.,
2001;Calinetal.,2002).
NearlyalloftheclonedmiRNAsareconservedin
closelyrelatedanimals,suchashumanandmouse,or
ae(Lagos-Quintanaetal.,2003;
Limetal.,2003a,2003b).Thisstatementremainstrue
evenwhenignoringevolutionaryconservationasacrite-
ealso
conservedmorebroadlyamongtheanimallineages
(Ambrosetal.,2003b;Aravinetal.,2003;Lagos-
Quintanaetal.,2003;Limetal.,2003a).Forinstance,
smiRNAshaveeasily
recognizedhomologsamongthehumanmiRNAs(Lim
etal.,2003a).Whencomparingdistantlineages,consid-
erableexpansionorcontractionofgenefamiliesisap-
parent,themoststrikingexamplebeingthelet-7family,
sandat
least15inhuman,butonlyoneinDrosophila(Pasquinelli
etal.,2000;Aravinetal.,2003;Laietal.,2003;Limet
al.,2003a).
Genomics:miRNAExpression
example,slin-4
andlet-7RNAshavestage-specificexpressionindevel-
opmentasifthey,too,functionasstRNAs(Pasquinelli
etal.,2000;Lauetal.,2001;Lagos-Quintanaetal.,2002;
Bashirullahetal.,2003;Limetal.,2003a).Otherinterest-
ingexamplesincludemiR-1,whichisprimarilyfoundin
themammalianheart(LeeandAmbros,2001;Lagos-
Quintanaetal.,2002);miR-122,whichisprimarilyinthe
liver(Lagos-Quintanaetal.,2002);miR-223,whichis
primarilyinthegranulocytesandmacrophagesof
mousebonemarrow(Chenetal.,2004);miRNAsofthe
mir-35–mir-42cluster,whicharepreferentiallyintheC.
elegansembryo(Lauetal.,2001);andthoseofthemir-
290–mir-295cluster,whichareexpressedinmouseem-
bryonicstemcellsbutnotindifferentiatedcells(Hou-
baviyetal.,2003).Expressionarraytechnologyhasbeen
adaptedtoexaminemiRNAsandhasrevealeddistinct
expressionpatternsindifferentdevelopmentalstages
orregionsofthemammalianbrain(Krichevskyetal.,
2003).Withallthedifferentgenesandexpressionpat-
terns,itisreasonabletoproposethateverymetazoan
celltypeateachdevelopmentalstagemighthavea
distinctmiRNAexpressionprofile—providingampleop-
portunityfor“micromanaging”theoutputofthetran-
scriptome.
AnotherremarkableaspectofmiRNAexpressionis
example,miR-2,miR-52,andmiR-58areeachpresent
onaverageatmorethan50,000moleculesperadult
wormcell—agreaterabundancethantheU6snRNAof
thespliceosome(Limetal.,2003a).Whetherthishigh
expressionisattributabletoveryrobusttranscription
RNAsare
tance,miR-124
ispresentintheadultwormonaverageat800molecules
percell(Limetal.,2003a).Thisloweraveragelevel
(thoughstillhigherthanthatofthetypicalmRNA)might
beduetolowexpressioninmanycellsorhighexpres-
dingthatthemouseor-
thologofmiR-124isnearlyexclusivelyexpressedinthe
brainsupportsthelatterexplanation(Lagos-Quintana
etal.,2002).
Genomics:ComputationalApproaches
andGeneNumber
TherehasbeensomespeculationastowhymiRNAs
werenotdiscoveredearlier;theanswerisclearlynotthat
NAsandtheirassociatedproteins
appeartobeoneofthemoreabundantribonucleopro-
eless,miRNAswhose
expressionisrestrictedtononabundantcelltypesor
specificenvironmentalconditionscouldstillbemissed
,computationalapproacheshave
beendevelopedtocomplementexperimentalap-
rlyon,
homologysearcheshaverevealedorthologsandpara-
logsofknownmiRNAgenes(Pasquinellietal.,2000;
Lagos-Quintanaetal.,2001;Lauetal.,2001;Leeand
Ambros,2001).Anothersimpleapproachhasbeento
searchthevicinityofknownmiRNAgenesforother
stemloopsthatmightrepresentadditionalgenesofa
genomiccluster(Lauetal.,2001;Aravinetal.,2003;
Seitzetal.,2003;Ohleretal.,2004).Thisstrategyis
importantbecausesomeofthemostrapidlyevolving
miRNAgenesarepresentastandemarrayswithinop-
eron-likeclusters,andthedivergentsequencesofthese
genesmakethemrelativelydifficulttospotusingthe
moregeneralapproaches.
Gene-findingapproachesthatdonotdependonho-
mologyorproximitytoknowngeneshavealsobeen
developedandappliedtoentiregenomes(Ambrosetal.,
2003b;Gradetal.,2003;Laietal.,2003;Limetal.,
2003a).Theytypicallystartbyidentifyingconservedge-
nomicsegmentsthatbothfalloutsideofpredictedpro-
tein-codingregionsandpotentiallycouldformstem
loopsandthenscorethesecandidatemiRNAstemloops
forthepatternsofconservationandpairingthatcharac-
,thetwomostsensi-
tivecomputationalscoringtoolsareMiRscan,whichhas
beensystematicallyappliedtonematodeandvertebrate
candidates(Limetal.,2003a,2003b),andmiRseeker,
whichhasbeensystematicallyappliedtoinsectcandi-
dates(Laietal.,2003).BothMiRscanandmiRseeker
haveidentifieddozensofgenesthatweresubsequently
(orconcurrently)eof
theirrelativelyhighsensitivity,MiRscanandmiRseeker
Cell
284
havealsoenabledreasonablyfirmestimatesofthenum-
berofmiRNAgenesinthegenomesofhuman(200–255
miRNAgenes;Limetal.,2003b),s(103–120
genes;Limetal.,2003a;Ohleretal.,2004),andDrosoph-
ila(96–124genes;Laietal.,2003).Ineachspecies,these
numbersrepresentnearly1%ofthepredictedgenesin
thegenome,afractionsimilartothatofotherlargegene
familieswithregulatoryroles,suchasthehomeodomain
transcription-factorfamily.
TheseestimatesimplythatthemajorityofmiRNA
geneshavenowbeenfoundinthemammalianandnem-
atodelineages—s,whereap-
proximately100miRNAgeneshavebeenidentified.
(Thistallyisconservativeinthatitexcludessomere-
portedgenesthatappeartobequestionable[Ohleret
al.,2004].)InDrosophila,77genes,representing71
uniquemiRNAs,havebeenreliablyidentified(Aravinet
al.,2003;Laietal.,2003),andinhumans,approximately
175genes,representingapproximately145unique
miRNAs,haveeitherbeenvalidatedinhumancellsor
identifiedbasedontheirhomologytogenesvalidated
inmouseorzebrafish(miRNARegistry,release3.0;Grif-
fiths-Jones,2004).Whenconsideringthenumberof
miRNAsremainingtobeidentifiedorvalidatedinthese
species,itisimportanttorememberthatgenenumber
estimatesbyMiRscanandmiRseekerrestontheas-
sumptionthatthestemloopsoftherare,difficult-to-
clonemiRNAswillshowpatternsofconservationand
pairingresemblingthoseoftheabundant,easilycloned
-
gans,forwhichtherewasareassuringlackofcorrelation
betweenthenumberoftimesanmiRNAwasclonedand
itsMiRscanscore(Limetal.,2003a).
Ifinsteadadisproportionatenumberofdifficult-to-
clonemiRNAsarealsodifficulttoidentifycomputation-
ally,thenestimatesofthenumberofmiRNAgenesin
ghtbethesituation
inhumans—perhapsbecausethevertebrategenomes
thefirst109miRNAsclonedfrommammalshavereadily
identifiablehomologsinthegenomeofpufferfish(Fugu
ripens),whichenabledMiRscananalysistoidentify81
(74%)ofthesegenesbyscoringstemloopsconserved
inhuman,mouse,andfish(Limetal.,2003b).Extrapolat-
ingfromthissensitivityandthenumberofadditional
candidateswithscoresmatchingtheknownmiRNAs,
anupperboundonthenumberofhumanmiRNAgenes
wascalculatedtobe255(Limetal.,2003b).However,
morerecentlyidentifiedmammalianmiRNAgenesap-
pearrelativelylesslikelytobeconservedinfish,particu-
larlythosegenesclonedfromembryonicstemcellsand
mammalianbrainandthe14miRNAcandidatesresiding
inalargeimprintedcluster(Houbaviyetal.,2003;Kim
etal.,2003;Seitzetal.,2003).Theserecentdatasuggest
thatthemoredifficult-to-clonemammalianmiRNAsare
lesslikelytobeconservedinfishandthuslesslikelyto
havebeenidentifiedcomputationally,whichimpliesthat
aconfidentupperboundonthenumberofhumangenes
isdifficulttodetermineusinganalysesthatextended
tofishandthat255istoolowavalueforthisupper
bound—althoughitstillmightexceedtheactualnumber
ofhumanmiRNAgenes.
Genomics:miRNAsinPlants
CloningofsmallRNAsfromplantshasalsorevealed
miRNAs,althoughthemultitudeofother21to24nt
RNAsfoundinplantssometimescomplicatedtheirinitial
classification(Llaveetal.,2002a;Metteetal.,2002;Park
etal.,2002;Reinhartetal.,2002).Likethemetazoan
miRNAs,theplantmiRNAs(1)areendogenouslyex-
pressedف22ntRNAspotentiallyprocessedfromone
armoffoldbackprecursors,(2)aregenerallyconserved
inevolution,and(3)comefromregionsofthegenome
distinctfrompreviouslyannotatedgenes(Reinhartet
al.,2002).Todate,20uniqueArabidopsismiRNAshave
beenreported;afewarecloselyrelatedtoeachother,
andthusthereportedgenesrepresent15distinctmiRNA
families.(BartelandBartel,2003;Palatniketal.,2003).
Becausesomecouldbederivedfrommultiplegenomic
loci,the20miRNAscouldrepresentmorethan40Arabi-
ologysearchesbasedonthe
clonedgenesalsorevealnumerouspotentialparalogs
withapointsubstitutionortwointhepredictedmiRNA.
Additionalgenefamiliesarelikelytobefoundwhenthe
cloningofsmallplantRNAsisscaledupandcomputa-
appearsthat,asinanimals,asubstantialfractionofthe
generegulatorymoleculesinplantscouldbeRNArather
thanprotein.
ThediscoveryofmiRNAsinbothplantsandanimals
suggeststhatthisclassofnoncodingRNAshasbeen
modulatinggeneexpressionsinceatleastthelastcom-
monancestoroftheselineages(Reinhartetal.,2002).
Nonetheless,plantandanimalmiRNAsdifferinsome
aspects,whichappeartoberelatedtodifferencesin
tnotabledifferencesarein
themiRNAstemloops;theplantpredictedfoldbacks
aremuchmorevariableinsizeandtypicallylargerthan
thoseofanimals(Figure1;foramorecomprehensive
lookatplantmiRNApredictedstemloops,seeonline
supplementalmaterialofReinhartetal.,2002).More
subtledifferencesincludesomewhatmorepairingbe-
tweenthemiRNAandtheotherarmofthestemloopin
plantscomparedtoanimals,atighterdistributionof
plantmiRNAlengthsthatcenterson21ntratherthan
the22–23ntlengthsmostoftenseeninanimals,and
perhapsastrongerpreferenceforaUatthe5Јterminus
oftheplantmiRNAs(Lauetal.,2001;Reinhartetal.,
2002;BartelandBartel,2003).Thesedifferences,to-
getherwiththeabsenceofreportsthatparticularmiRNA
genesareconservedbetweenplantsandanimals,leave
opentheprospectthatmiRNAgenesaroseindepen-
dentlyineachofthesemulticellularlineages,aftertheir
lastcommonancestor(whichisthoughttohavebeen
unicellular).Eveninthisscenarioofdualorigins,the
presenceofmiRNAsinallplantandanimalspecies
examinedthusfarsuggestsearlyoriginsinbothlin-
eages,perhapsprecedingandfacilitatingthedevelop-
mentalpatterningneededformulticellularbodyplans.
Biogenesis:miRNATranscription
A693bpgenomicfragmentrescuesthelin-4deficiency,
implyingthatalltheelementsrequiredfortheregulation
andinitiationoftranscriptionarelocatedinthisshort
fragment(Leeetal.,1993).However,littleisknownre-
gardingthesetranscriptionalprocessesforlin-4orany
Review
285
RNAsresidinginintrons
arelikelytosharetheirregulatoryelementsandprimary
re-
mainingmiRNAgenes,presumablytranscribedfrom
theirownpromoters,noprimarytranscriptshavebeen
eless,theseprimarymiRNAtran-
scripts,calledpri-miRNAs(Leeetal.,2002),aregener-
allythoughttobemuchlongerthantheconservedstem
loopscurrentlyusedtodefinemiRNAgenes,assug-
gestedbythefollowing:(1)theideathatclustered
miRNAstemloopsaretranscribedfromasingleprimary
transcript(Lagos-Quintanaetal.,2001;Lauetal.,2001),
(2)matchesbetweenmiRNAsandlengthyESTsinthe
databases(Lagos-Quintanaetal.,2002;Aukermanand
Sakai,2003),(3)RT-PCRexperimentsamplifyinglarge
fragmentsofthepri-miRNAs(Leeetal.,2002;Aravinet
al.,2003).
ThetwocandidateRNApolymerasesforpri-miRNA
roducesthe
mRNAsandsomenoncodingRNAs,includingthesmall
nucleolarRNAs(snoRNAs)andfourofthesmallnuclear
RNAs(snRNAs)ofthespliceosome,whereaspolIIIpro-
ducessomeoftheshorternoncodingRNAs,including
tRNAs,5SribosomalRNA,
miRNAsprocessedfromtheintronsofprotein-coding
followingobservationsprovideindirectevidencethat
manyoftheothermiRNAsalsoarepolIIproducts,even
thoughmostofthemetazoanmiRNAgenesdonothave
theclassicalsignalsforpolyadenylylation(Ohleretal.,
2004):(1)Thepri-miRNAscanbequitelong,morethan
one1kb,whichislongerthantypicalpolIIItranscripts.
(2)Thesepresumedpri-miRNAsoftenhaveinternalruns
ofuridineresidues,whichwouldbeexpectedtoprema-
turelyterminatepolIIItranscription.(3)ManymiRNAs
aredifferentiallyexpressedduringdevelopment,asis
observedoftenforpolIIbutnotpolIIIproducts.(4)
Fusionsthatplacetheopenreadingframeofareporter
proteindownstreamfromthe5ЈportionofmiRNAgenes
leadtorobustreporterproteinexpression,suggesting
thatmiRNAprimarytranscriptsarecappedpolIItran-
esofsuchfusionsincludeartificialre-
porterconstructsdesignedtoinvestigatetheregulation
ofmiRNAexpression(Johnsonetal.,2003;Johnston
andHobert,2003)andanaturalchromosometransloca-
tionlinkedtoanaggressiveBcellleukemia,inwhicha
truncatedMYCgeneisfusedtothe5Јportionofmir-
142(Gauwerkyetal.,1989;Lagos-Quintanaetal.,2002).
AlthoughtheseobservationsindicatethatmanymiRNAs
arepolIItranscripts,othersmightstillbepolIIItran-
scripts,justasmostbutnotallsnRNAsarepolIIprod-
cexpressionofmiR-142andothermiRNAs
fromapolIIIpromoterproducesefficientlyandprecisely
processedmiRNAsthatfunctioninvivo(Chenetal.,
2004),indicatingthatthereisnoobligatelinkbetween
theidentityofthepolymeraseanddownstreammiRNA
processingorfunction.
Biogenesis:miRNAMaturation
Thecurrentmodelformaturationofthemammalian
ststepisthe
nuclearcleavageofthepri-miRNA,whichliberatesa
ف60–70ntstemloopintermediate,knownasthemiRNA
precursor,orthepre-miRNA(Leeetal.,2002;Zengand
Cullen,2003).Thisprocessingisperformedbythe
DroshaRNaseIIIendonuclease,whichcleavesboth
strandsofthestematsitesnearthebaseoftheprimary
stemloop(Leeetal.,2003)(Figure2B,step2).Drosha
cleavestheRNAduplexwithastaggeredcuttypicalof
RNaseIIIendonucleases,andthusthebaseofthepre-
miRNAstemloophasa5Јphosphateandف2nt3Ј
overhang(Basyuketal.,2003;Leeetal.,2003).This
pre-miRNAisactivelytransportedfromthenucleusto
thecytoplasmbyRan-GTPandtheexportreceptorEx-
portin-5(Yietal.,2003;Lundetal.,2004)(Figure2B,
step3).
ThenuclearcutbyDroshadefinesoneendofthe
erendisprocessedinthecyto-
plasmbytheenzymeDicer(Leeetal.,2003).Dicer,also
anRNaseIIIendonuclease,wasfirstrecognizedforits
roleingeneratingthesmallinterferingRNAs(siRNAs)
thatmediateRNAinterference(RNAi)(Bernsteinetal.,
2001)andwaslatershowntoplayaroleinmiRNAmatu-
ration(Grishoketal.,2001;Hutva
´
gneretal.,2001;Ket-
tingetal.,2001).Accordingtothecurrentmodelof
miRNAmaturation,Dicerperformsanactivityinmeta-
zoanmiRNAmaturationsimilartothatwhichitperforms
whenchoppingupdouble-strandedRNAduringRNAi:
Itfirstrecognizesthedouble-strandedportionofthe
pre-miRNA,perhapswithparticularaffinityfora5Јphos-
phateand3Јoverhangatthebaseofthestemloop.
Then,atabouttwohelicalturnsawayfromthebaseof
thestemloop,
cleavagebyDicerlopsofftheterminalbasepairsand
loopofthepre-miRNA,leavingthe5Јphosphateandف2
nt3ЈoverhangcharacteristicofanRNaseIIIandproduc-
ingansiRNA-likeimperfectduplexthatcomprisesthe
maturemiRNAandsimilar-sizedfragmentderivedfrom
theopposingarmofthepre-miRNA(Figure2B,step4).
Thefragmentsfromtheopposingarm,calledthe
miRNA*sequences(Lauetal.,2001),arefoundinlibrar-
iesofclonedmiRNAsbuttypicallyatmuchlowerfre-
quencythanarethemiRNAs(Lagos-Quintanaetal.,
2002;Aravinetal.,2003;Limetal.,2003a).Forexample,
inaneffortthatidentifiedover3400clonesrepresenting
smiRNAs,only38clonesrepresenting14
miRNAs*werefound(Limetal.,2003a).Thisapproxi-
mately100-folddifferenceincloningfrequencyindi-
catesthatthemiRNA:miRNA*duplexisgenerallyshort-
livedcomparedtothemiRNAsinglestrand.
Accordingtothecurrentmodel,thespecificityofthe
initialcleavagemediatedbyDroshadeterminesthecor-
rectregisterofcleavagewithinthemiRNAprecursor
andthusdefinesbothmatureendsofthemiRNA(Lee
etal.,2003).ThisideathatDrosha,notDicer,imparts
thespecificityisappealingbecausestudieshaveshown
thatgenericdouble-strandedRNAisrefractoryto
DroshacleavageandthatDicerprogressivelychops
upanRNAdoublestrand,irrespectiveofitssequence
(Zamoreetal.,2000;Bernsteinetal.,2001;Elbashiretal.,
2001a;Zhangetal.,2002).ThedeterminantsofDrosha
recognitionarelargelyundefinedbutincludethesec-
ondarystructureatthebaseoftheprimarystemloop
aswellassomeelementsflankingthestemloopbut
generallywithin125ntofthemiRNA(Leeetal.,2003;
Chenetal.,2004).
ThisstepwisescenarioformiRNAmaturationisbased
Cell
286
genesisofmiRNAsandsiRNAs
(A)ThebiogenesisofaplantmiRNA(steps1–6;seetextfordetails)anditshetero-silencingoflociunrelatedtothatfromwhichitoriginated
(step7).Thepre-miRNAintermediates(bracketed),thoughttobeveryshort-lived,NA(red)is
incorporatedintotheRISC(step6),whereasthemiRNA*(blue)isdegraded(hatchedsegment).Amonophosphate(P)marksthe5Јterminus
ofeachfragment.
(B)ThebiogenesisofametazoanmiRNA(steps1–6;seetextfordetails)anditshetero-silencingoflociunrelatedtothatfromwhichit
originated(step7).
(C)ThebiogenesisofanimalsiRNAs(steps1–6;seetextfordetails)andtheirauto-silencingofthesame(orsimilar)locifromwhichthey
originated(step7).
primarilyontheinvestigationofmammalianDroshaand
Dicerfunction(Leeetal.,2002,2003).Thenotionthat
itappliestoothermetazoanspeciesissupportedby
slin-4RNA,
whichappearstobeanexcellentmatch(withinthereso-
lutionofnucleasemapping)tothatexpectedforthe
lin-4pre-miRNA(Leeetal.,1993).Furthermore,pre-
sumedpre-miRNAsfornumerousmiRNAscanbede-
tectedonNorthernblots,andwhenexaminedinthe
contextofreducedDiceractivity,thesepre-miRNAs
invariablyincreaseinabundance,aswouldbeexpected
ifDicerwasresponsiblefortheirprocessing(Grishoket
al.,2001;Hutva
´
gneretal.,2001;Kettingetal.,2001;Lee
andAmbros,2001;Limetal.,2003a).Finally,thegeneral
existenceofthemiRNA:miRNA*duplexissupportedby
thecloningofnumerousmiRNAs*innematodesand
flies,althoughformostmiRNAgenes,anexperimentally
identifiedmiRNA*hasnotyetbeenreported.
ThecloningofafewmiRNAs*inplantsalsopointsto
atransientmiRNA:miRNA*duplex(Reinhartetal.,2002).
However,thebiogenesisofthisduplexappearstodiffer
inplants(Figure2A).Mostnotably,pre-miRNAshave
notbeencompellinglydetectedinplants—notevenin
plantswithcrippledDCL1,aDicer-likeproteinknown
toassistinmiRNAmaturation(Reinhartetal.,2002).
Thelackofpre-miRNAinthesedcl1-9plants(formerly
knownascaf-1plants),togetherwiththeapparentnu-
clearlocalizationoftheDCL1protein(Pappetal.,2003),
suggeststhatDCL1providestheDroshafunctionality
inplants,makingthefirstcutthatsetstheregisterfor
miRNAmaturation(Figure2A,step2).DCL1(oranother
enzymeyettobeidentified)thenmakesthesecondcut,
whichcorrespondstometazoanDicercleavage,before
themiRNAleavesthenucleus(Figure2A,step3).A
coupledsecondcutinthenucleuswouldexplainwhy
pre-miRNA-likeRNAsdonotaccumulatetodetectable
dalsoexplainwhyectopicnuclear
butnotcytoplasmicexpressionofP19,aplantviral
proteinthatinhibitssilencingbysequesteringsiRNA
duplexes,preventsmiRNAaccumulation(Pappetal.,
Review
287
2003).PerhapsHASTY,theplantorthologofExportin-5,
isresponsibleforexportingthemiRNA:miRNA*duplex
fromthenucleus,whichwouldexplainthepleiotropic
developmentalphenotypesofhastymutants(Bollman
etal.,2003;Yietal.,2003;Lundetal.,2004)(Figure2A,
step4).
Biogenesis:RISCAssembly
Followingcleavageandnucleocytoplasmicexport,the
miRNApathwayofplantsandanimalsappearstobe
biochemicallyindistinguishablefromthecentralsteps
ofRNAsilencingpathwaysknownasposttranscriptional
genesilencing(PTGS)inplants,quellinginfungi,and
,understandingmiRNAbiogene-
sisandfunctionhasbeengreatlyfacilitatedbyanalogy
andcontrasttothesiRNAsofRNAi,
lightofthesebiochemicalconnections,thediscovery
oflin-4anditsregulationoflin-14canbeconsideredin
hindsightasthefirstcharacterizationofanRNAi-like
phenomenoninanimals.
ToillustratethecommonalitybetweenmiRNAsand
siRNAs,theRNAipathwayisbrieflyoutlinedhere(and
depictedinFigure2C).Thepathwaybeginswithlong
double-strandedRNA,eitherabimolecularduplexoran
extendedhairpin,thateitherisartificiallyintroducedinto
thecelloranimalduringageneknockdownexperiment
(Fireetal.,1998)orisnaturallygenerated—fromsense
andantisensegenomictranscripts,orperhapsfromthe
activityofacellularRNA-dependentRNApolymerase
(foundinplants,fungi,andnematodes,butnotflies
ormammals)orasanintermediateofviralreplication
(CogoniandMacino,1999;Kettingetal.,1999;Dalmay
etal.,2000;Mourrainetal.,2000;Smardonetal.,2000;
Aravinetal.,2001,2003;Lietal.,2002).Thedouble-
strandedRNAisprocessedbyDicerintomanyف22nt
siRNAs(HamiltonandBaulcombe,1999;Hammondet
al.,2000;Parrishetal.,2000;Zamoreetal.,2000;Grishok
etal.,2001;Kettingetal.,2001;KnightandBass,2001)
(Figure2C,steps2–4).AlthoughthesesiRNAsareini-
tiallyshortdouble-strandedspecieswith5Јphosphates
and2nt3ЈoverhangscharacteristicofRNaseIIIcleav-
ageproducts,theyeventuallybecomeincorporatedas
single-strandedRNAsintoaribonucleoproteincomplex,
knownastheRNA-inducedsilencingcomplex(RISC)
(Hammondetal.,2000;Elbashiretal.,2001a,2001b;
Nyka
¨
nenetal.,2001;Martinezetal.,2002;Schwarzet
al.,2002)(Figure2C,step6).TheRISCidentifiestarget
messagesbasedonperfect(ornearlyperfect)comple-
mentaritybetweenthesiRNAandthemRNA,andthen
theendonucleaseoftheRISCcleavesthemRNAat
asitenearthemiddleofthesiRNAcomplementarity,
measuringfromthe5ЈendofthesiRNAandcutting
betweenthenucleotidespairingtoresidues10and11
ofthesiRNA(Elbashiretal.,2001a,2001b).Similarpath-
wayshavebeenproposedforgenesilencinginplants
andfungi(HamiltonandBaulcombe,1999;Vanceand
Vaucheret,2001;Pickfordetal.,2002).
TheRISChasbeenpurifiedfromflyandhumancells
andinbothcasescontainsamemberoftheArgonaute
proteinfamily,whichisthoughttobeacorecomponent
ofthecomplex(Hammondetal.,2001;Hutva
´
gnerand
Zamore,2002;Martinezetal.,2002).Thisfitsnicelywith
previousgeneticdatashowingthatArgonauteproteins
RDE-1,QDE2,andAGO1arecrucialforRNAiandanalo-
gousprocessesinworms,fungi,andplants,respectively
(Tabaraetal.,1999;Catalanottoetal.,2000;Fagardet
al.,2000).Argonauteanditshomologsareapproxi-
mately100kDaproteinsthataresometimescalledPPD
proteinsbecausetheyallsharethePAZandPIWIdo-
mains(Ceruttietal.,2000).ThePAZdomain(firstrecog-
nizedinPiwi,Argonaute,andZwille/Pinheadproteins)
hasastablefoldwhenisolatedfromtherestofthe
protein,whichhasabarrelcorethattogetherwith
asideappendageappearstobindweaklytosingle-
strandedRNAsatleast5ntinlengthandalsotodouble-
strandedRNA(Lingeletal.,2003;Songetal.,2003;Yan
etal.,2003).Thisdualbindingabilitysuggeststhatthe
Argonauteproteincouldbedirectlyassociatedwiththe
siRNAbeforeandafteritrecognizesthemRNAtarget.
OtherRISC-associatedproteinsincludethesus-
pectedRNAbindingproteinsVIGandFragileX-related
proteinandthenucleaseTudor-SN,noneofwhichhave
definedrolesintheRISC(Caudyetal.,2002,2003;
Ishizukaetal.,2002).Theseproteinsdonotcopurify
withRISCinallpurificationschemesandtheirstoichi-
sthey
arealsocorecomponentsoftheRISCthatdonotremain
a-
tively,theycouldbeaccessoryfactorsthatmodifythe
ion
thatRISCcomesindifferentsubtypesisalreadysup-
portedbythenumberofArgonautefamilymembers
foundindifferentspecies,s,
andthepreferentialgeneticorbiochemicalassociation
ofdifferentfamilymemberswithdifferenttypesofsi-
lencingRNAs(Grishoketal.,2001;Caudyetal.,2002;
Zilbermanetal.,2003).TheRISCendonuclease,known
asSlicer,hasnotbeenidentified,suggestingthatit
mightbepresentinsub-stoichiometricamountsand
onlyrecruitedaftertheothercomponentsofRISChave
rpossibility
isthatoneoftheidentifiedRISCcomponentsprovides
theSliceractivitybymeansofanunrecognized
nucleasedomain.
MicroRNAswerefirstreportedtoresideinthemiRNA
ribonucleoproteincomplex(miRNP),whichinhumans
includestheproteinseIF2C2,thehelicaseGemin3,and
Gemin4(Mourelatosetal.,2002).eIF2C2isahuman
Argonautehomologandwaslaterfoundtobeaconstit-
uentofthehumansiRNA-programmedRISC(Martinez
etal.,2002).Furthermore,thehumanlet-7miRNAis
associatedwitheIF2C2andcapableofspecifyingcleav-
ageofanartificialtargetwithperfectcomplementarity
tothemiRNA(Hutva
´
gnerandZamore,2002).Thus,the
miRNPpossessesthesalientpropertiesthatdefinethe
RISC(Hutva
´
gnerandZamore,2002),andalthoughit
mightlaterbeshowntorepresentaparticularsubtype
ofRISC,
perspectiveisfurthersupportedbythedemonstration
thatplantmiRNAscandirectcleavageoftheirnatural
targets(Llaveetal.,2002b;Tangetal.,2003)andthat
siRNAsoriginallydesignedtospecifycleavagecanalso
mediatetranslationalrepression(Doenchetal.,2003;
Zengetal.,2003).
WhenthemiRNAstrandofthemiRNA:miRNA*duplex
isloadedintotheRISC,themiRNA*appearstobe
enisthemechanism
Cell
288
ionsofSmallSilencingRNAs
(A)rrowheadindicatessiteofcleavage.
(B)TranslationalrepressionspecifiedbymiRNAsorsiRNAs.
(C)Transcriptionalsilencing,thoughttobespecifiedbyheterochromaticsiRNAs.
forchoosingwhichofthetwostrandsenterstheRISC?
Theanswerlargelyliesintherelativestabilityofthetwo
endsoftheduplex:forbothsiRNAandmiRNAduplexes,
thestrandthatenterstheRISCisnearlyalwaystheone
whose5Јendislesstightlypaired(Khvorovaetal.,2003;
Schwarzetal.,2003).Thisobservationsuggeststhata
helicase-likeenzyme(yettobeidentified)samplesthe
endsoftheduplexmultipletimes—usuallyreleasingthe
endbeforebeginningtoproductivelyunwindtheduplex
butoccasionallyunwindingtheduplex,resultingina
strongbiasforproductiveunwindingattheeasierend
(Khvorovaetal.,2003;Schwarzetal.,2003)(Figures
2A–2C,steps5).Thiselegantruleforpredictingwhich
strandoftheduplexwillentertheRISCwasinitially
formulatedbasedonobservationsandexperimentsin
animalsystems,butitalsoappliestoplantsiRNAs
(Khvorovaetal.,2003)dictive
valueforthevastmajorityofplantandanimalmiRNAs
stronglyimpliestheexistenceofthemiRNA:miRNA*du-
plexasatransientintermediateinthebiogenesisofall
miRNAs,eventhoseforwhichamiRNA*hasnotyet
wvertebrateandinsectgenes,both
strandsofthemiRNAduplexaccumulateatfrequencies
suggestingthatbothentertheRISC,raisingthepros-
pectthateitherorbothmightbefunctional(Lagos-
Quintanaetal.,2002;Krichevskyetal.,2003;Schwarz
etal.,2003).Theserarecasescanbereconciledwith
theasymmetricloadingoftheRISCbecausetheends
oftheseduplexeshavenearlyequivalentstabilitiesat
theirends;foreachRISCassembled,thehelicaseloads
onlyonestrandofeachduplexbutchooseseachstrand
withsimilarfrequency(Schwarzetal.,2003).
Mechanism:mRNACleavage
MicroRNAscandirecttheRISCtodownregulategene
expressionbyeitheroftwoposttranscriptionalmecha-
nisms:mRNAcleavageortranslationalrepression(Fig-
ures3Aand3B).Accordingtotheprevailingmodel,the
choiceofposttranscriptionalmechanismsisnotdeter-
minedbywhetherthesmallsilencingRNAoriginated
asansiRNAoramiRNAbutinsteadisdeterminedby
theidentityofthetarget:Onceincorporatedintoacyto-
plasmicRISC,themiRNAwillspecifycleavageifthe
mRNAhassufficientcomplementaritytothemiRNA,or
itwillrepressproductivetranslationifthemRNAdoes
nothavesufficientcomplementaritytobecleavedbut
doeshaveasuitableconstellationofmiRNAcomple-
mentarysites(Hutva
´
gnerandZamore,2002;Zenget
al.,2002,2003;Doenchetal.,2003).Althoughthismodel
isgenerallysupportedbyexperimentaltests,highly
functionalsiRNAsandmetazoanmiRNAshavese-
quence-compositiondifferencescenteringatpositions
12and13,whichmightpointtoinherentdifferential
sequencepreferencesforthetworespectivemodesof
repression(Khvorovaetal.,2003).Furthermore,aper-
plexingobservationhascomefromthestudyofaplant
miRNA,miR172,whichappearstoregulateAPETALA2
viatranslationalrepressiondespitethenear-perfect
complementaritybetweenthemiRNAanditssingle
complementarysiteintheAPETALA2ORF(Aukerman
andSakai,2003;Chen,2003).
WhenamiRNAguidescleavage,thecutisatprecisely
thesamesiteasthatseenforsiRNA-guidedcleavage,
i.e.,betweenthenucleotidespairingtoresidues10and
11ofthemiRNA(Elbashiretal.,2001a;Hutva
´
gnerand
Zamore,2002;Llaveetal.,2002b;Kasschauetal.,2003).
Theregisterofcleavagedoesnotchangewhenthe
miRNAisnotperfectlypairedtothetargetatits5Ј
terminus(Kasschauetal.,2003;Palatniketal.,2003).
Therefore,thecutsiteappearstobedeterminedrelative
tomiRNAresidues,notmiRNA:
cleavageofthemRNA,themiRNAremainsintactand
canguidetherecognitionanddestructionofadditional
messages(Hutva
´
gnerandZamore,2002;Tangetal.,
2003).
Mechanism:TranslationalRepression
Fromthebeginning,itwasproposedthatlin-4RNA
slin-
thesimplestinterpretationoftheob-
servationthatlin-4RNAexpressioncoincideswitha
dropinLIN-14proteinwithoutachangeinlin-14mRNA
(Wightmanetal.,1993).Thesurprisecamelater,when
itwasshownthatthepolysomeprofileoflin-14mRNA
atthefirstlarvalstageisindistinguishablefromthat
atlaterlarvalstages,whenLIN-14proteinlevelshave
dropped(OlsenandAmbros,1999).Thesameistrue
forlin-28mRNA,anothermessagetargetedbylin-4RNA
(Seggersonetal.,2002).Twopossibilitieswereputfor-
wardtoexplaintheseresults(OlsenandAmbros,1999).
Thelin-4RNAmightrepresstranslationatastepafter
translationinitiation,inamannerthatdoesnotperceiv-
ablyalterthedensityoftheribosomesonthemessage,
e.g.,bytheslowingorstallingofalltheribosomeson
rnativepossibilityisthattranslation
continuesatthesameratebutisnonproductivebecause
thenewlysynthesizedpolypeptideisspecificallyde-
review,bothofthesemechanisticpossi-
Review
289
bilitiesarelumpedtogetherastranslationalrepression,
asiscommonpractice,eventhoughinthesecondpossi-
bilitypolypeptidesynthesisperseisnotrepressed.A
bettermechanisticunderstandingoflin-4-specified
translationalrepressionawaitsthedevelopmentofan
invitrosystemthatfaithfullyrecapitulateslin-4regula-
tionofitstargets.
Extendingtheanalysisofpolysomeprofilesbeyond
slin-4regulationwillbeimportantforlearning
whetherthepostinitiationmechanismappliesmoregen-
erallytotranslationalrepressionmediatedbyother
,evidencefortranslationalrepression
ofanymetazoanmiRNAtargetsotherthanthoseoflin-4
isscantbecausethefateofthemessengerRNAduring
miRNA-mediatedregulationhasnotyetbeenmonitored
eless,severalindirect
linesofevidencesupportthenotionthatmetazoan
miRNAsotherthanlin-4RNAtypicallymediatetransla-
tionalrepressionratherthanmRNAcleavage:First,
othermetazoanmiRNAs,aswellassiRNAs,canrepress
theexpressionofheterologousreportertranscripts
withoutdecreasingmRNAlevels,ifthesemessages
containeitherthenaturalmiRNAcomplementarysites
fromthemiRNAtarget(Brenneckeetal.,2003)ormulti-
pleartificialcomplementarysitesthathavebulgesor
mismatchesattheircenterwhenpairedtothemiRNA,
suchthatthepatternofbasepairingresemblesthat
foundbetweenthelet-7RNAanditsnaturalcomplemen-
s,lin-413ЈUTR(Zengetal.,
2002,2003;Doenchetal.,2003).Second,thelet-7-pro-
grammedRISCendogenoustohumancellsdoesnot
cleaveanRNAfragmentcontainingthelet-7comple-
slin-41(Hutva
´
gnerand
Zamore,2002).Third,thereisadifferencebetween
plantsandanimalswithregardtotheextentofcomple-
mentaritybetweenthemiRNAsandmRNAs(Rhoades
etal.,2002).Becausenear-perfectcomplementarityis
thoughttoberequiredforRISC-mediatedcleavagebut
nottranslationalrepression,thelowerdegreeofcomple-
mentarityseeninanimalssuggeststhattranslational
repressionismoreprevalentinanimalsthaninplants.
Nonetheless,itwouldbeprematuretoconcludethat
moremetazoanmiRNAregulatorytargetsaretransla-
singlylittle
complementarityappearstobeneededtospecifyde-
tectableRISC-mediatedcleavageinmammaliancells
(Jacksonetal.,2003),suggestingthatitwillnotbelong
beforenaturalexamplesofmiRNA-directedmRNA
cleavagewillbereportedinanimals.
ThecooperativeactionofmultipleRISCsappears
toprovidethemostefficienttranslationalinhibition
(Doenchetal.,2003).Thisexplainsthepresenceofmulti-
plemiRNAcomplementarysitesinmostgenetically
identifiedtargetsofmetazoanmiRNAs(Leeetal.,1993;
Wightmanetal.,1993;Reinhartetal.,2000;Abrahanteet
al.,2003;Linetal.,2003).Thecomputationallyidentified
metazoantargetsalsohavemultiplesites,butthispat-
ternisuninformativebecausethepresenceofmultiple
siteswasacriterionfortheiridentification(Brennecke
etal.,2003;Lewisetal.,2003;Starketal.,2003).Al-
thoughonlyasmallfractionofthemiRNA-mRNAregula-
torypairsareknowninanyanimal,therearealready
instancesinwhichdifferentmiRNAspecieshavebeen
proposedtoregulatethesametargets(Reinhartetal.,
2000;Abrahanteetal.,2003;Linetal.,2003).These
examples,andtheanalogytootherbiologicalregulatory
systems,mostnotablytranscriptionalregulation,have
ledtothegeneralexpectationthatasthelistofknown
metazoanmiRNA:mRNAregulatoryinteractionsbe-
comesmorecomprehensive,combinatorialcontrolwill
beseentobecommon,ifnotthenorm.
Thecomplementarysitesfortheknownmetazoan
targetsresideinthe3Јasmightreflecta
mechanisticpreference,perhapsenablingthebound
complexestoavoidthemRNA-clearingactivityofthe
ll,numerousotherexamplesofeukary-
otictranslationregulationaremediatedthrough3ЈUTR
elements(KuerstenandGoodwin,2003).Alternatively,
itmightreflectabiasinthewaythatmetazoanmiRNA
targetsandcomplementarysitesarediscovered:The
lin-4:lin-14precedentmighthavedirectedsubsequent
searchestothe3ЈUTRs,andconservedcomplementary
sitesareeasiertodistinguishintheUTRs,awayfrom
theconfoundingsequenceconservationoftheORFs.
ThereportedsiRNA-mediatedtranslationalrepression
fromasingleimperfectcomplementarysiteintheORF
ofamammalianreporterconstruct(Saxenaetal.,2003)
illustrateswhyitwouldbeprematuretoconcludethat
mostmetazoanmiRNAregulationismediatedthrough
multiplecomplementarysitesinthe3ЈUTRs.
AmongthedozensofmiRNA-targetrelationshipsthat
havebeenexamined,therehasbeennoevidencefor
miRNAsdirectingupregulationofgeneexpression.
ThesefindingsareconsistentwiththeideathatmiRNAs
areallactingwithinasilencingcomplex,namelythe
miRNAsarelimitedtofunctioningwithin
RISCcomplexes,thereisstilltheprospectthatsome
miRNAsmightspecifymorethanjustposttranscriptional
repression;somemighttargetDNAfortranscriptional
silencing(Figure3C).ArgonauteproteinsandsiRNAs
areassociatedwithDNAmethylationandsilencingin
plants(Metteetal.,2000;Hamiltonetal.,2002;Zilber-
manetal.,2003),heterochromatinformationinfungi
(Halletal.,2002;ReinhartandBartel,2002;Volpeetal.,
2002),andDNArearrangementsinciliates(Mochizuki
etal.,2002).Eachoftheseexamplessuggeststheexis-
Asarenot
involvedinDNAsilencing,itwillbeinterestingtolearn
howtheyavoidenteringthenuclearRISC,particularly
inplants,whereprocessingappearstobecompleted
inthenucleus.
Mechanism:TargetRecognition
Theimportanceofcomplementaritytothe5Јportionof
metazoanmiRNAshasbeensuspectedsincetheobser-
vationthatthelin-14UTRhas“coreelements”ofcom-
plementaritytothe5Јregionofthelin-4miRNA(Wight-
manetal.,1993).Morerecentobservationssupportthis
idea:(1)Residues2–8ofseveralinvertebratemiRNAs
areperfectlycomplementaryto3ЈUTRelementspre-
viouslyshowntomediateposttranscriptionalrepression
(Lai,2002).(2)WithinthemiRNAcomplementarysites
ofthefirstvalidatedtargetsofinvertebratemiRNAs,
mRNAresiduesthatpair(sometimesimperfectly)toresi-
dues2–8ofthemiRNAareperfectlyconservedinor-
thologousmessagesofotherspecies,andacontiguous
helixofatleastsixbasepairsisnearlyalwaysseenin
Cell
290
thisregion(Starketal.,2003).(3)Residues2–8ofthe
miRNAarethemostconservedamonghomologous
metazoanmiRNAs(Lewisetal.,2003;Limetal.,2003a).
(4)WhenpredictingtargetsofmammalianmiRNAs,re-
quiringperfectpairingtotheheptamerspanningresi-
dues2–8ofthemiRNAismuchmoreproductivethan
isrequiringpairingtoanyotherheptamerofthemiRNA
(Lewisetal.,2003).Pairingtothis5Јcoreregionalso
appearstodisproportionallygovernthespecificityof
siRNA-mediatedmRNAcleavage(Jacksonetal.,2003;
Puschetal.,2003),andthesameistrueforaplant
miRNAthatmediatesmRNAcleavage(Reinhart,Mal-
lory,Tang,Zamore,Barton,D.B.,unpublished).
Whyiscomplementaritytothe5Јendofthesmall
RNAuniversallyimportant,regardlessofthemechanism
ofgeneregulation?OnepossibilityisthattheRISCpre-
sentsonlythiscoreregiontonucleatepairingtothe
tationoftheseف7nucleotidesprear-
rangedinthegeometryofanA-formhelixwouldprefer-
entiallyenhancetheaffinitywithmatchedmRNAseg-
tationofapreformedhelicalsegmentof
thislengthwouldbeareasonablecompromisebetween
thetopologicaldifficultiesassociatedwithlongerprear-
rangedhelicalgeometryandthedropininitialbinding
scenario,mismatcheswiththecoreregioninhibitinitial
targetrecognitionandthuspreventcleavageortransla-
tionalrepressionregardlessofthedegreeofcomple-
e
issufficientadditionalpairingaftertheremainderofthe
miRNAisallowedtoparticipate,-
ever,corepairingsupplementedbyjustafewflanking
pairsappearstobesufficienttomediatetranslational
repressionincooperationwithotherRISCsboundto
themessage(Lewisetal.,2003).Interestingly,theability
oftheArgonautePAZdomaintobindbothdouble-and
single-strandedRNAs(Lingeletal.,2003;Songetal.,
2003;Yanetal.,2003),mentionedearlier,wouldmake
itasuitablecandidateforpresentingthecoreandstabi-
lizingthecorepairing.
Mechanism:DistinctionsbetweenmiRNAs
andsiRNAs
BecausemiRNAsandendogenoussiRNAshavea
sharedcentralbiogenesis(Figures2Band2C,steps4–6)
andcanperforminterchangeablebiochemicalfunctions
(Figures3Aand3B),thesetwoclassesofsilencingRNAs
cannotbedistinguishedbyeithertheirchemicalcompo-
eless,important
distinctionscanbemade,particularlyinregardtotheir
origin,evolutionaryconservation,andthetypesofgenes
thattheysilence(Figured2Band2C,steps1–3and
7;BartelandBartel,2003):First,miRNAsderivefrom
genomiclocidistinctfromotherrecognizedgenes,
whereassiRNAsoftenderivefrommRNAs,transposons,
viruses,orheterochromaticDNA(Figure2,steps1).
Second,miRNAsareprocessedfromtranscriptsthat
canformlocalRNAhairpinstructures,whereassiRNAs
areprocessedfromlongbimolecularRNAduplexesor
extendedhairpins(Figure2,steps2).Third,asingle
miRNA:miRNA*duplexisgeneratedfromeachmiRNA
hairpinprecursormolecule,whereasamultitudeof
siRNAduplexesaregeneratedfromeachsiRNAprecur-
sormolecule,leadingtomanydifferentsiRNAsaccumu-
latingfrombothstrandsofthisextendeddsRNA(Figure
2).Fourth,miRNAsequencesarenearlyalwayscon-
servedinrelatedorganisms,whereasendogenous
ypesof
differencesarethebasisofpracticalguidelinesfordis-
tinguishingandannotatingnewlydiscoveredmiRNAs
andendogenoussiRNAs(Ambrosetal.,2003a).
Althoughmuchremainstobelearnedaboutthebio-
logicaltargetsofmiRNAsandendogenoussiRNAs,a
fifthdistinctioncanbemadebetweenthesetwoclasses
ofsilencingRNAs:endogenoussiRNAstypicallyspecify
“auto-silencing,”inthattheyspecifythesilencingof
thesamelocus(orverysimilarloci)fromwhichthey
originate,whereasmiRNAsspecify“hetero-silencing,”
inthattheyareproducedfromgenesthatspecifythe
silencingofverydifferentgenes(Figure2,steps7).Natu-
ralexamplesofauto-silencingincludethesilencingof
viruses,transposons,andtheheterochromaticouterre-
rexampleistheDrosoph-
ilaSu(Ste)repeats,whichgeneratesiRNAsthatsilence
theSu(Ste)repeatsthemselvesaswellastheverysimilar
Stellategenes(Aravinetal.,2001).Atfirstglance,
miR-127andmiR-136mightseemtobeexceptionsto
thisprinciplebecausetheyoriginatefromtheantisense
strandoftheirpresumptivetarget,theRtl1mRNA(Seitz
etal.,2003).However,becausethesegeneslieinan
imprintedlocus,inwhichthemiRNAsareexpressed
fromthematernalchromosomeandtheRtl1mRNAis
expressedfromthepaternalchromosome,these
miRNAscanstillbethoughtofasspecifyinghetero-
fthdistinctionexplainsthegreaterse-
xtent
thatthesiRNAscomefromthesamelocithattheytarget,
amutationaleventthatchangesthesequenceofthe
siRNAwouldalsochangethesequenceofitsregulatory
target,andsiRNAregulationwouldbepreserved—an
unusualcaseofmaintaininganimportantfunctionwith-
contrast,amutationinamiRNAwouldrarelybeaccom-
paniedbysimultaneouscompensatorychangesatthe
lociofitstargets,andthusselectionpressurewould
preservethemiRNAsequence.
WiththesedistinctionsbetweenthemiRNAsandthe
endogenoussiRNAsinmind,itisperhapsworthconsid-
eringhowtoclassifythesmallRNAsthatarisefrom
constructsintroducedintocellsforthepurposeofgene
NAsprocessedfrom
theextendeddouble-strandedregionsoflong,inverted
therextremeare
approximately22ntRNAsprocessedfrompre-miRNA-
azoancasesinwhichthese
stemloopsincludethedeterminantsforthesequential
processingbyDroshathenDicer,classificationisagain
simple;r,clas-
sificationislessclearforRNAsderivingfromtheshort
hairpinconstructstypicallyusedforknockdownsin
mammaliancells(Dykxhoornetal.,2003),whosepro-
cessingisunlikelytoinvolveDroshaandevenmightnot
involveDicer.
Function:RegulatoryRolesofmiRNAs
Themostpressingquestiontoarisefromthediscovery
ofthehundredsofdifferentmiRNAsis,whatareallthese
Review
291
NAsandTheirFunctions:ExamplesforwhichPhenotypicConsequencesofDisruptedorEctopicmiRNARegulationAreKnown
miRNA
Nematodes
lin-4RNA
let-7RNA
lsy-6RNA
Insects
bantammiRNA
miR-14
Mammals
miR-181
Plants
miR165/166
miR172
miR-JAW
miR159
TargetGene(s)
Ce
Ce
Ce
Ce
Ce
lin-14probabletranscriptionfactor
lin-28coldshockdomainprotein
lin-41probableRNA-bindingprotein
hbl-1transcriptionfactor
cog-1transcriptionfactor
BiologicalRoleofmiRNA/TargetGene
Timingofearlylarvaldevelopmentaltransitions
Timingofearlylarvaldevelopmentaltransitions
Timingoflatelarvaldevelopmentaltransitions
Timingoflatelarvaldevelopmentaltransitions
Left/rightasymmetryofchemoreceptorexpression
Apoptosisandgrowthcontrolduringdevelopment
Apoptosisandfatmetabolism
Hematopoieticdifferentiation
Axialmeristeminititionandleafdevelopment
Flowerdevelopment;timingtransitiontoflowering
Leafdevelopment,embryonicpatterning
Leafdevelopment
Refs
1,2
3
4,5
6,7
8
9
10
11
12-14
15-18
19
12,15,19
Dmhidpro-apoptoticprotein
unknown
unknown
AtREVandrelelatedtranscriptionfactors
AtAP2andrelatedtranscriptionfactors
AtTCP4andreleatedtranscriptionfactors
AtMYB33andrelatedtranscriptionfactors
Speciesabbreviations:Caenorhabditiselegans,Ce;Drosophilamelanogaster,Dm;Arabidopsisthaliana,At.
1(Leeetal.,1993);2(Wightmanetal.,1993);3(Mossetal.,1997);4(Reinhartetal.,2000);5(Slacketal.,2000);6(Abrahanteetal.,2003);
7(Linetal.,2003);8(JohnstonandHobert,2003);9(Brenneckeetal.,2003);10(Xuetal.,2003);11(Chenetal.,2004);12(Rhoadesetal.,
2002);13(Tangetal.,2003);14(Emeryetal.,2003);15(Parketal.,2002);16(Kasschauetal.,2003);17(Chen,2003);18(Aukermanand
Sakai,2003);19(Palatniketal.,2003)
tinynoncodingRNAsdoing?Forlin-4,let-7,andseveral
othermiRNAsidentifiedbyforwardgenetics,crucial
cluestotheirfunctionandregulatorytargetscameeven
beforetheirstatusasnoncodingRNAgeneswasdiscov-
ered(MeneelyandHerman,1979;Chalfieetal.,1981;
Ambros,1989;Weigeletal.,2000;Hipfneretal.,2002;
AukermanandSakai,2003;Brenneckeetal.,2003;
JohnstonandHobert,2003;Xuetal.,2003).Theseand
othermiRNAsthathavereportedfunctionsbasedonin
eof
thesecases,functionwasdeterminedbythephenotypic
consequencesofamutatedmiRNAoranalteredmiRNA
complementarysite,eitherofwhichcandisruptmiRNA
rcases,functionwasinferredfrom
theeffectsofmutationsortransgenicconstructsthat
leadtoectopicexpressionofthemiRNA.
ForthevastmajorityofmiRNAs,thephenotypiccon-
sequencesofdisruptedoralteredmiRNAregulationare
r,computationalapproachesarebe-
ingdevelopedtofindtheregulatorytargetsofthe
miRNAs,providingcluestomiRNAfunctionbasedon
theknownrolesofthesetargets(Rhoadesetal.,2002;
Enrightetal.,2003;Lewisetal.,2003;Starketal.,2003).
Computationallypredictedtargetssupportedbysubse-
quentexperimentsorindependentphylogeneticevi-
erimentssupporting
theidentityofthesetargetstypicallyfallintotwoclasses.
IncaseswherethemiRNAisthoughttospecifymRNA
cleavage,thecleavageproductscanbereverse-tran-
scribed,cloned,andsequenced;apreponderanceof
sequencesthatendpreciselyatthepredictedsiteof
cleavageprovidesexperimentalvalidationthatthis
mRNAisacleavagetargetofthecomplementarymiRNA
(Llaveetal.,2002b;Kasschauetal.,2003;Xieetal.,
2003).Toenabledetectionofbothtranslationalrepres-
sionandmRNAcleavage,heterologousreporterassays
canbeusedinwhichthemiRNAcomplementarysites
arefusedtoareportergeneandexpressionisexamined
relativetocontrolconstructs,orinthepresenceand
absenceofthemiRNA(Lewisetal.,2003;Starketal.,
2003).Cautioniswarrantedwheninterpretingreporter
assaysthatinvolvemultimerizationofthemiRNAcom-
plementarysite(s)becausesuchanassaysucceeded
invalidatingamiRNAcomplementarysitethatwasmis-
takenlytakenfromagenethatwasunrelatedtothe
intendedtargetbutsimilarlyannotated(Kawasakiand
Taira,2003a,2003b).Apositiveresultintheheterolo-
gousreporterassayindicatesthatdeterminantsneeded
formiRNAregulationareindeedpresentwithinthe
mRNAfragmentfusedtothereporter,whichtogether
withevolutionaryconservationofboththemiRNAand
itscomplementarysitescanprovidereasonableevi-
se,sucha
hypothesisisconsiderablystrengthenedwithevidence
ofcoincidentexpressionofthemiRNAanditstargetin
theanimalorplant,orexperimentsthatexaminethe
effectsofmanipulatingthemiRNAoritscomplementary
siteinitsnativeinvivocontext.
Function:RolesofPlantmiRNAs
Inplants,miRNAshaveapropensitytopairtomRNAs
withnear-perfectcomplementarity,enablingconvincing
targetstobereadilypredictedformostknownplant
miRNAs(Rhoadesetal.,2002;BartelandBartel,2003).
EvolutionaryconservationofthemiRNA:mRNApairing
inArabidopsisandrice,togetherwithexperimentalevi-
denceshowingthatmiRNAscandirectcleavageoftar-
getedmRNAs,supportsthevalidityofthesepredictions
(Llaveetal.,2002a;Rhoadesetal.,2002;Kasschauet
al.,2003;Tangetal.,2003).TheknownplantmiRNAs
havearemarkablepenchantfortargetingtranscription
factorgenefamilies,particularlythosewithknownor
suspectedrolesindevelopmentalpatterningorcelldif-
ferentiation(Rhoadesetal.,2002;Tables1and2).This
explainsthepleiotropicdevelopmentalphenotypesof
plantsmutantinDCL1(CAF)andHEN1,genesknown
toinfluencemiRNAaccumulation,andAGO1,agene
thatmightbeinvolvedinmiRNAfunction(Bohmertetal.,
Cell
292
NAsandTheirFunctions:ExamplesforwhichStrongEvidencefortheValidityoftheRegulatoryTargetHasBeenReported
butthePhenotypicConsequencesofDisruptedorEctopicmiRNARegulationAreNotYetKnown
miRNA
Insects
miR-7
TargetGene(s)BiologicalRoleofTargetGene(s)
Interprets
Interprets
Interprets
Promotes
Promotes
Promotes
Refs
DmHLHm3basicHLHtranscriptionalrepressor
DmhairybasicHLHtranscriptionalrepressor
Dmm4Brdfamilyprotein
miR-14familyDmgrimantagonistofcaspaseinhibitor
Dmreaperantagonistofcaspaseinhibitor
Dmsickleantagonistofcaspaseinhibitor
Mammals
miR-1HsBrain-derivedneurotrophicfactor(BDNF)
HsGlucose-6-phosphatedehydrogenase(G6PD)
miR-19aHsPtdIns(3,4,5)P3phosphatase(PTEN)
miR-23aHsStromalcell-derivedfactor1(SDF-1)
HsBRN-3bPOU-domaintranscriptionfactor
miR-26aHsSMAD-1transcriptionalco-modulator
miR-34HsDelta1transmembraneprotein
HsNotch1transmembranereceptorforDelta
miR-101HsENX-1polycombgene
HsN-MYCbasicHLHtranscriptionfactor
miR-130HsMacrophagecolonystimulatingfactor-1(MCSF)
Plants
miR170/171AtSCL6-III,-IV&relatedtranscriptionfactors
miR156/157AtSPL2&relatedtranscriptionfactors
miR160AtARF10,ARF17&relatedtranscriptionfactors
miR167AtARF8&ARF6transcriptionfactors
miR164AtCUC1,CUC2&relatedtranscriptionfactors
miR169AtCBF-HAP2DNA-bindingproteins
miR162AtDCL1Dicer-likeRNaseIII
Notch-mediateddecisionsinneuronaldevelopment1,2
Notch-mediateddecisionsinneuronaldevelopment2
Notch-mediateddecisionsinneuronaldevelopment2
apoptosis2
apoptosis2
apoptosis2
3
3
3
3
3
3
3
3
3
3
3
4-7
6,8
6,8
6,8,9
6,8
6
10,11
Growthfactor;neuronaldevelopment
Oxidativestressresistance
Tumorsuppressorgene
Growth&localizationofhematopoieticprogenitorcells
Nueronaldevelopment
RegulatesTGF-dependentgeneexpression
ActivatesNotchduringcell-fatedecisions
Cell-fatedecisionsduringdevelopment
Proliferationofhemotpoeiticcellsandothergeneregulation
Proto-oncogene;celldifferentiation&proliferation
Mononuclearphagocyticlineageregulation
Relatedtogenesforrootradialpatterning
Relatedtogenesforfloralmeristemidentity
Relatedtogenesforauxinresponse&development
Relatedtogenesforauxinresponse&development
Shootapicalmeristemformation&organseparation
unknown
miRNAbiogenesis
Themetazoanregulatorytargentregulatorytargetslistedwere
predictedcomputationallythensupportedwithindependentphylogeneticand/sabbreviations:Drosophila
melanogaster,Dm;human,Hs;Arabidopsisthaliana,At.
1(Lai,2002);2(Starketal.,2003);3(Lewisetal.,2003);4(Llaveetal.,2002a);5(Reinhartetal.,2002);6(Rhoadesetal.,2002);7(Llaveet
al.,2002b);8(Kasschauetal.,2003);9(Parketal.,2002);10(Xieetal.,2003);11(BartelandBartel,2003)
1998;Jacobsenetal.,1999;Parketal.,2002;Reinhartet
al.,2002;Schaueretal.,2002).Ofthefewpredicted
planttargetsthatarenottranscriptionfactors,twoare
DCL1andAGO1,suggestinganegativefeedbackmech-
anismthatcontrolstheexpressionofthesegeneswith
knownorsuspectedrolesinmiRNAbiogenesisand
function(Rhoadesetal.,2002;BartelandBartel,2003;
Xieetal.,2003).
WhyaretheresomanytargetsoftheplantmiRNAs
transcriptionfactorsthathavebeenimplicatedinthe
controlofplantdevelopment?Themodelputforwardto
answerthisquestionproposesthatmanyplantmiRNAs
functionduringcellulardifferentiationbymediatingthe
degradationofkeyregulatorygenetranscriptsinspe-
cificdaughtercelllineages(Rhoadesetal.,2002;Figure
4).Forexample,duringdifferentiation,certaingenes
specifyingalessdifferentiatedstatemightneedtobe
nbeachievedbyrepressingtranscrip-
tion;however,ageneisnotfullyoffuntilitsmessage
,tomorequicklystopex-
pressionofsuchagene,thedifferentiatingcellcande-
ployamiRNAthatspecifiesthecleavageofthatmRNA.
Theactiveclearingofthelingeringregulatorymessages
(orofnewmessagesgeneratedbycontinuedtranscrip-
tion)couldenablerapiddaughtercelldifferentiation
withouthavingtodependonregulatorygeneshavingcon-
respect,miRNAreg-
ulationwouldbeanalogoustoubiquitin-dependentpro-
teindegradation,exceptthatspecificmRNAs,rather
thanproteins,aretargetedfordegradation.
Thismodelconcurswiththeobservationthatamuta-
tiondisruptingthemiRNAcomplementarysiteofPHB
mRNAleadstoamoreexpansivedistributionofthe
message,asifitwerenolongerbeingclearedfromcells
expressingthemiRNA(McConnelletal.,2001;Rhoades
etal.,2002).Italsoexplainswhysomanyoftheinitially
identifiedtargetgenesspecifyformationandidentityof
,plantstemcells(Tables1and2)—these
arepreciselythegenesthatwouldneedtobeturned
elalsowould
applytoscenarioslaterindifferentiationortocases
wherethedaughtercellischoosingamongtwoormore
differentiatedstates,whichwouldexplainthetargeting
oftheothertranscriptsthathaveregulatoryroleslater
ntofcautionintryingtodeduce
thegeneralrolesofplantmiRNAsisthattheknown
setofplantmiRNAsisenrichedinthemoreabundant
miRNAsofplanttissuesandorgansandthusmightnot
mple,miRNAsspecifyingan
undifferentiatedstatewouldhavebeenlesslikelytobe
clonedbecausemostcellsofplantorgansaretypi-
callydifferentiated.
Function:RolesofAnimalmiRNAs
Computationalmethodshaverecentlybeendeveloped
toidentifythetargetsofDrosophilaandmammalian
miRNAs(Enrightetal.,2003;Lewisetal.,2003;Starket
al.,2003).Thesemethodssearchformultipleconserved
regionsofmiRNAcomplementaritywithin3Ј-
Review
293
gModelfortheRolesofmiRNAsthatTargetthe
MessagesofTranscriptionFactorsduringPlantDevelopment
Followingcelldivision,thedaughtercellsinheritmRNAsfromthe
precursorcell(step1).Adifferentiatingdaughtercell(cellonright)
expressesnewtranscriptionfactormessages(green)aswellasa
miRNA(red)complementarytomessagesthatmustbecleared(blue)
inorderforthecelltoprogresstothedifferentiatedstate(step2).
ThemiRNAdirectsthecleavageoftargetmessages,preventing
prolongedorinappropriateexpressionofthetranscriptionalregula-
tor,thusenablingtherapiddifferentiationofthedaughtercell(step
3).(FigureredrawnfromRhoadesetal.,2002,copyrightedbyCell
press,usedwithpermission.)
tifyingtargetsinanimalshasbeenamoredifficulttask
thaninplantsbecauseinanimalstherearefarfewer
mRNAswithnear-perfectcomplementaritytomiRNAs.
Thismakestheanalysisnoisier—muchmoreproneto
rmore,evolutionaryconservation
wasusedasacriterionfortargetidentificationinani-
mals,andthusitcouldnotbeusedasameansto
eless,theex-
perimentalsupportachievedforamajorityofthepredic-
tionstestedisencouraging(Table2),andtherearecom-
pellingreasonstotakeseriouslytheremaininguntested
mple,inoneoftheflystudies,there
werestrikingclustersoffunctionallyrelatedgenes
amongthetoppredictions(Starketal.,2003).Themost
notableexampleswereNotchtargetgenesformiR-7,
proapoptoticgenesformiR-2,andasetofenzymes
involvedinbranched-chainaminoaciddegradationfor
ammalianstudy,over400regulatory
targetswerepredictedwhenusingparametercutoffs
thatgaveasignal-to-noiseratioof3.2:1(Lewisetal.,
2003).Thissignal:noiseratiowasseenonlywhen
restrictingthemiRNAstothosemostconservedamong
mammalsandfish,andonlywhendemandingperfect
complementaritytothemostconservedportionof
miRNAs(the7ntcoresegmentcomprisingresidues2–8
ofthemiRNAs),observationsthatwouldbeexceedingly
difficulttoexplainifmostoftheidentifiedmessages
werenotrelevanttargetsofthemiRNAs.
TheabilitytoidentifyhundredsofmiRNAtargetswith
confidencethatmostofthepredictedtargetsareau-
thenticenablestheanalysisofthetypesofgenesmost
commonlytargetedbymammalianmiRNAs(Lewisetal.,
2003).Asinplants,thepredictedtargetsaresignificantly
enrichedingenesinvolvedintranscriptionalregulation,
suggestingthatthemodelproposedfortherolesof
manyplantmiRNAs(Figure4)couldalsobeoperating
eless,thisenrichmentfortranscrip-
tionalregulatorsisfarlesspronouncedinmammals,
andonlyaminorityofthepredictedmammaliantargets
dictedtargetsrep-
resentasurprisinglybroaddiversityofmolecularfunc-
,incontrasttothe
plantmiRNAs,mostmammalianmiRNAsdonotappear
tobeprimarilyinvolvedattheupperlevelsofthegene
regulatorycascadesbutinsteadappeartobeoperating
atmanylevelstoregulatetheexpressionofadiverse
setofgenes,manyofwhichdonotgoontodirectly
influencetheexpressionofothergenes(Lewisetal.,
2003).
Function:TheQuestionofSpecificity
AlthoughcurrentlistsofpredictedmiRNAtargetspro-
videinsightsandhypothesesforthousandsoffollow-
upexperiments,theycouldbefarfromcomprehensive.
Forexample,intheanimalstudies,thecomputational
methodsusedevolutionaryconservationtodistinguish
miRNAtargetsitesfromthemultitudeof3ЈUTRseg-
mentsthatotherwisewouldscoreequallywellwithre-
gardtothequalityandstabilityofbasepairing(Lewis
etal.,2003;Starketal.,2003).Thecell,ontheother
hand,cannotusethefilterofevolutionaryconservation
ismeanthat
manyoftheseothermRNAswouldinfactbetargeted
ifexpressedinthesamecellsasthecognatemiRNAs?
Perhapsnot—perhapsmiRNAbasepairingisnotthe
nsormRNA
structurecouldrestrictmiRNPaccessibilitytotheUTRs.
Butifthisweregenerallytrue,siRNAknockdownexperi-
mentsmightbeexpectedtohaveamuchlowersuccess
nsormRNAstructurecouldalsofacilitate
recognitionoftheauthenticmRNAtargetsbymeans
ofelementsinthemRNAsthathavethusfarescaped
didateforsuchaproteinistheFragile
X-relatedprotein,aDrosophilaRISCcomponentthatis
relatedtoproteinsknowntobindspecificmRNAs
(Caudyetal.,2002;Ishizukaetal.,2002).
Thealternativeidea—thatthequalityandstabilityof
basepairingisinfacttheprimarydeterminantofspeci-
ficity—ll,thiscomple-
mentarityrequirementincludesa7ntperfectornear-
perfectcorematchnearthe5ЈterminusofthemiRNA
(Lai,2002;Lewisetal.,2003;Starketal.,2003),which
byitselfwouldrepresentadegreeofspecificitycompa-
rabletothatoftheDNAsitesrecognizedbymanytran-
goutsidethe7ntcoresite,al-
thoughperhapslessimportantthanoncethought,
aschromatinstructurelimitsthepossibilitiesfortran-
scription-factorbinding,therestrictedsetofgenes
transcribedineachcelllimitswhichgenesofthege-
Cell
294
thesamewaythatthecooperativeactionofmultiple
transcriptionfactorsincreasesthespecificityoftheir
control,thecooperativeactionofhomotypicandhetero-
typicmiRNA:UTRinteractionswouldprovideanaddi-
tionalmechanismtoincreasespecificityofmiRNAcon-
ethesemechanismsforincreasingthe
regulatoryspecificity,thenotionthattarget-siterecogni-
tionisprimarilydeterminedbymultipleinstancesof
7ntcorecomplementaritywouldimplythatmiRNAs
influencetheexpressionofaremarkablylargenumber
ofdifferentmRNAs(Lewisetal.,2003).
The“manytargets”hypothesisisembracedandpar-
tiallyrationalizedinaproposalthatthemiRNAmilieu,
uniquetoeachcelltype,providesimportantcontextfor
theevolutionofallmRNAsequencesandisproductively
usedtodampentheutilizationofthousandsofmRNAs
(.-,unpublished).FormRNAsthat
shouldnotbeexpressedinaparticularcelltype,
miRNAsreduceproteinproductiontoinconsequential
ultisequivalenttoadiscreteoffswitch,
andthusthesemessages,whichincludetargetsofTable
1,canbethoughtofas“switchtargets.”Inadditionto
theseclassicaltargets,atleastthreeothercategories
ofmRNAscanbeimagined:Formessagescalled“tuning
targets,”miRNAscouldadjustproteinoutputinaman-
nerthatallowsforcustomizedexpressionindifferent
celltypesyetamoreuniformlevelwithineachcelltype.
OthermRNAscouldbesimplybystanders,“neutraltar-
gets,”forwhichdownregulationbymiRNAsistolerated
y,when
thinkingabouttheeffectsofthemiRNAmilieuonthe
evolutionofmRNAsequences,itisalsousefultocon-
sider“antitargets,”messagesunderselectivepressure
toavoidfortuitouscomplementaritytothemultitudeof
miRNAsinthecellswheretheyareexpressed,either
becausesuchcomplementaritywouldinappropriately
dampentheirexpressionorbecauseitwouldtitratethe
miRNAsawayfromtheirpropertargets.
Whilemolecularbiologistswillhavetheirhandsfull
identifyingandcharacterizingadditionalinstances
wheremiRNAsareplayingtheclassicalroleofdiscrete
generegulatoryswitches,computationalandsystems
biologistswillhavetocontendwiththeprospectthata
substantialfractionofallanimalmRNAscouldhavetheir
preciselevelofexpressiondefinedbymiRNAregulation.
TotheextentthatthemiRNAsdirecttranslationalre-
pressionratherthanmRNAcleavage,thisregulationwill
beinvisibletothemostpowerfultoolofthesystems
biologist,e-
less,inonlytwoyearssincetheabundanceofmiRNA
geneswasreported,therehasbeenrapidprogressin
catalogingthemiRNAgenes,determiningtheirexpres-
sionpatterns,andidentifyingtheirregulatorytargets,
providinghopethatthegoalofaccuratelyintegrating
theirfunctionintomodelsofmetazoangeneregulatory
circuitrycanonedayberealized.
Acknowledgments
Ithankmembersofmylab,,,,T.
Tuschl,,andmanyothercolleaguesfortheirinputand
stimulatingdiscussionsoverthepastfewyears,,B.
Bartel,,ce,andothersforhelpfulcommentson
miRNAsinmylabiscurrentlysupportedby
grantsfromtheNIHandtheAlexanderandMargaretStewartTrust.
References
Abrahante,J.E.,Daul,A.L.,Li,M.,Volk,M.L.,Tennessen,J.M.,Miller,
E.A.,andRougvie,A.E.(2003).TheCaenorhabditiseleganshunch-
back-likegenelin-57/hbl-1controlsdevelopmentaltimeandisregu-
4,625–637.
Ambros,V.(1989).Ahierarchyofregulatorygenescontrolsalarva-
57,49–57.
Ambros,V.,Bartel,B.,Bartel,D.P.,Burge,C.B.,Carrington,J.C.,
Chen,X.,Dreyfuss,G.,Eddy,S.R.,Griffiths-Jones,S.,Marshall,
M.,etal.(2003a).
9,277–279.
Ambros,V.,Lee,R.C.,Lavanway,A.,Williams,P.T.,andJewell,D.
(2003b).s.
.13,807–818.
Aravin,A.A.,Naumova,N.M.,Tulin,A.V.,Vagin,V.V.,Rozovsky,Y.M.,
andGvozdev,V.A.(2001).Double-strandedRNA-mediatedsilencing
ofgenomictandemrepeatsandtransposableelementsinDrosoph-
.11,1017–1027.
Aravin,A.A.,Lagos-Quintana,M.,Yalcin,A.,Zavolan,M.,Marks,D.,
Snyder,B.,Gaasterland,T.,Meyer,J.,andTuschl,T.(2003).The
smallRNAprofileduringDrosophilamelanogasterdevelopment.
5,337–350.
Aukerman,M.J.,andSakai,H.(2003).Regulationoffloweringtime
andfloralorganidentitybyaMicroRNAanditsAPETALA2-liketarget
ell10,10.
Bartel,B.,andBartel,D.P.(2003).MicroRNAs:Attherootofplant
development?PlantPhysiol.132,709–717.
Bashirullah,A.,Pasquinelli,A.E.,Kiger,A.A.,Perrimon,N.,Ruvkun,
G.,andThummel,C.S.(2003).Coordinateregulationofsmalltempo-
.
259,1–8.
Basyuk,E.,Suavet,F.,Doglio,A.,Bordonne,R.,andBertrand,E.
(2003).Humanlet-7stem-loopprecursorsharborfeaturesofRNase
cAcidsRes.31,6593–6597.
Bernstein,E.,Caudy,A.A.,Hammond,S.M.,andHannon,G.J.(2001).
RoleforabidentateribonucleaseintheinitiationstepofRNAinter-
409,295–296.
Bohmert,K.,Camus,I.,Bellini,C.,Bouchez,D.,Caboche,M.,and
Benning,C.(1998).AGO1definesanovellocusofArabidopsiscon-
.17,170–180.
Bollman,K.M.,Aukerman,M.J.,Park,M.Y.,Hunter,C.,Berardini,
T.Z.,andPoethig,R.S.(2003).HASTY,theArabidopsisortholog
ofexportin5/MSN5,regulatesphasechangeandmorphogenesis.
Development130,1493–1504.
Brennecke,J.,Hipfner,D.R.,Stark,A.,Russell,R.B.,andCohen,
S.M.(2003).bantamencodesadevelopmentallyregulatedmi-
croRNAthatcontrolscellproliferationandregulatestheproapo-
113,25–36.
Calin,G.A.,Dumitru,C.D.,Shimizu,M.,Bichi,R.,Zupo,S.,Noch,
E.,Aldler,H.,Rattan,S.,Keating,M.,Rai,K.,etal.(2002).Frequent
deletionsanddown-regulationofmicro-RNAgenesmiR15and
.
99,15524–15529.
Catalanotto,C.,Azzalin,G.,Macino,G.,andCogoni,C.(2000).Gene
404,245.
Caudy,A.A.,Myers,M.,Hannon,G.J.,andHammond,S.M.(2002).
FragileX-relatedproteinandVIGassociatewiththeRNAinterfer-
ev.16,2491–2496.
Caudy,A.A.,Ketting,R.F.,Hammond,S.M.,Denli,A.M.,Bathoorn,
A.M.,Tops,B.B.,Silva,J.M.,Myers,M.M.,Hannon,G.J.,andPlas-
terk,R.H.(2003).AmicrococcalnucleasehomologueinRNAief-
425,411–414.
Cerutti,L.,Mian,N.,andBateman,A.(2000).Domainsingenesilenc-
ingandcelldifferentiationproteins:thenovelPAZdomainandredef-
.25,481–482.
Chalfie,M.,Horvitz,H.R.,andSulston,J.E.(1981).Mutationsthat
24,59–69.
Chen,X.(2003).AMicroRNAasaTranslationalRepressorofAPET-
Review
295
hedonline
September11,2003.10.1126/science.1088060.
Chen,C.Z.,Li,L.,Lodish,H.F.,andBartel,D.P.(2004).MicroRNAs
e303,83–86.
Cogoni,C.,andMacino,G.(1999).GenesilencinginNeurospora
crassarequiresaproteinhomologoustoRNA-dependentRNApoly-
399,166–169.
Dalmay,T.,Hamilton,A.,Rudd,S.,Angell,S.,andBaulcombe,D.C.
(2000).AnRNA-dependentRNApolymeraseinArabidopsisisre-
quiredforposttranscriptionalgenesilencingmediatedbyatrans-
101,543–553.
Doench,J.G.,Peterson,C.P.,andSharp,P.A.(2003).siRNAscan
ev.17,438–442.
Dostie,J.,Mourelatos,Z.,Yang,M.,Sharma,A.,andDreyfuss,G.
(2003).NumerousmicroRNPsinneuronalcellscontainingnovelmi-
9,631–632.
Dykxhoorn,D.M.,Novina,C.D.,andSharp,P.A.(2003).Killingthe
messenger:.
CellBiol.4,457–467.
Elbashir,S.M.,Leneckel,W.,andTuschl,T.(2001a).RNAinterfer-
ev.
15,188–200.
Elbashir,S.M.,Martinez,J.,Patkaniowska,A.,Lendeckel,W.,and
Tuschl,T.(2001b).FunctionalanatomyofsiRNAsformediatingeffi-
.
20,6877–6888.
Emery,J.F.,Floyd,S.K.,Alvarez,J.,Eshed,Y.,Hawker,N.P.,Izhaki,
A.,Baum,S.F.,andBowman,J.L.(2003).Radialpatterningofarabi-
.
13,1768–1774.
Enright,A.J.,John,B.,Gaul,U.,Tuschl,T.,Sander,C.,andMarks,
D.S.(2003).Biol.5,R1.
Fagard,M.,Boutet,S.,Morel,J.B.,Bellini,C.,andVaucheret,H.
(2000).AGO1,QDE-2,andRDE-1arerelatedproteinsrequiredfor
post-transcriptionalgenesilencinginplants,quellinginfungi,and
97,11650–
11654.
Fire,A.,Xu,S.,Montgomery,M.K.,Kostas,S.A.,Driver,S.E.,and
Mello,C.C.(1998).Potentandspecificgeneticinterferencebydou-
391,806–811.
Gauwerky,C.E.,Huebner,K.,Isobe,M.,Nowell,P.C.,andCroce,
C.M.(1989).ActivationofMYCinamaskedt(8;17)translocation
86,8867–8871.
Grad,Y.,Aach,J.,Hayes,G.D.,Reinhart,B.J.,Church,G.M.,Ruvkun,
G.,andKim,J.(2003).Computationalandexperimentalidentification
11,1253–1263.
Griffiths-Jones,S.(2004).cAcidsRes.
32,D109–D111.
Grishok,A.,Pasquinelli,A.E.,Conte,D.,Li,N.,Parrish,S.,Ha,I.,
Baillie,D.L.,Fire,A.,Ruvkun,G.,andMello,C.C.(2001).Genesand
mechanismsrelatedtoRNAinterferenceregulateexpressionofthe
sdevelopmentaltiming.
Cell106,23–34.
Hall,I.M.,Shankaranarayana,G.D.,Noma,K.,Ayoub,N.,Cohen,
A.,andGrewal,S.I.(2002).Establishmentandmaintenanceofa
e297,2232–2237.
Hamilton,A.J.,andBaulcombe,D.C.(1999).Anovelspeciesof
e
286,950–952.
Hamilton,A.,Voinnet,O.,Chappell,L.,andBaulcombe,D.(2002).
.
21,4671–4679.
Hammond,S.C.,Bernstein,E.,Beach,D.,andHannon,G.J.(2000).
AnRNA-directednucleasemediatesposttranscriptionalgenesi-
404,293–296.
Hammond,S.M.,Boettcher,S.,Caudy,A.C.,Kobayashi,R.,and
Hannon,G.J.(2001).Argonaute2,alinkbetweengeneticandbio-
e293,1146–1150.
Hipfner,D.R.,Weigmann,K.,andCohen,S.M.(2002).Thebantam
cs161,1527–1537.
Houbaviy,H.B.,Murray,M.F.,andSharp,P.A.(2003).Embryonic
5,351–358.
Hutva
´
gner,G.,andZamore,P.D.(2002).AmicroRNAinamultiple-
e297,2056–2060.
Hutva
´
gner,G.,McLachlan,J.,Pasquinelli,A.E.,Balint,E.,Tuschl,T.,
andZamore,P.D.(2001).AcellularfunctionfortheRNA-interference
enzymeDicerinthematurationofthelet-7smalltemporalRNA.
Science293,834–838.
Ishizuka,A.,Siomi,M.C.,andSiomi,H.(2002).ADrosophilafragile
XproteininteractswithcomponentsofRNAiandribosomalproteins.
GenesDev.16,2497–2508.
Jackson,A.L.,Bartz,S.R.,Schelter,J.,Kobayashi,S.V.,Burchard,
J.,Mao,M.,Li,B.,Cavet,G.,andLinsley,P.S.(2003).Expression
hnol.
21,635–637.
Jacobsen,S.E.,Running,M.P.,andMeyerowitz,E.M.(1999).Disrup-
tionofanRNAhelicase/RNAseIIIgeneinArabidopsiscausesunreg-
pment126,5231–
5243.
Johnson,S.M.,Lin,S.Y.,andSlack,F.J.(2003).Thetimeofappear-
slet-7microRNAistranscriptionallycontrolled
.
259,364–379.
Johnston,R.J.,andHobert,O.(2003).AmicroRNAcontrollingleft/
426,
845–849.
Kasschau,K.D.,Xie,Z.,Allen,E.,Llave,C.,Chapman,E.J.,Krizan,
K.A.,andCarrington,J.C.(2003).P1/HC-Pro,aviralsuppressorof
RNAsilencing,interfereswithArabidopsisdevelopmentandmiRNA
4,205–217.
Kawasaki,H.,andTaira,K.(2003a).Hes1isatargetofmicroRNA-
23duringretinoic-acid-inducedneuronaldifferentiationofNT2cells.
Nature423,838–842.
Kawasaki,H.,andTaira,K.(2003b).retraction:Hes1isatargetof
microRNA-23duringretinoic-acid-inducedneuronaldifferentiation
426,100.
Ketting,R.F.,Haverkamp,T.H.,vanLuenen,H.G.,andPlasterk,R.H.
(1999).s,requiredfortransposonsilencingand
RNAinterference,isahomologofWernersydromehelicaseand
99,133–141.
Ketting,R.F.,Fischer,S.E.J.,Bernstein,E.,Sijen,T.,Hannon,G.J.,
andPlasterk,R.H.A.(2001).DicerfunctionsinRNAinterferenceand
insynthesisofsmallRNAinvolvedindevelopmentaltiminginC.
ev.15,2654–2659.
Khvorova,A.,Reynolds,A.,andJayasena,S.D.(2003).Functional
115,209–216.
Kim,J.,Krichevsky,A.,Grad,Y.,Hayes,G.D.,Kosik,K.S.,Church,
G.M.,andRuvkun,G.(2003).IdentificationofmanymicroRNAsthat
.
hedonlineDecember22,2003,10.1073/
pnas.2333854100.
Knight,S.W.,andBass,B.L.(2001).ArolefortheRNaseIIIenzyme
DCR-1inRNAinterferenceandgermlinedevelopment,incaeno-
e293,2269–2271.
Krichevsky,A.M.,King,K.S.,Donahue,C.P.,Khrapko,K.,andKosik,
K.S.(2003).AmicroRNAarrayrevealsextensiveregulationofmi-
9,1274–1281.
Kuersten,S.,andGoodwin,E.B.(2003).Thepowerofthe3ЈUTR:
.4,626–637.
Lagos-Quintana,M.,Rauhut,R.,Lendeckel,W.,andTuschl,T.
(2001).Identificationofnovelgenescodingforsmallexpressed
e294,853–858.
Lagos-Quintana,M.,Rauhut,R.,Yalcin,A.,Meyer,J.,Lendeckel,
W.,andTuschl,T.(2002).Identificationoftissue-specificmicroRNAs
.12,735–739.
Lagos-Quintana,M.,Rauhut,R.,Meyer,J.,Borkhardt,A.,and
Cell
296
Tuschl,T.(2003).
9,175–179.
Lai,E.C.(2002).MicroRNAsarecomplementaryto3ЈUTRmotifs
.
30,363–364.
Lai,E.C.,Tomancak,P.,Williams,R.W.,andRubin,G.M.(2003).
-
nomeBiol4:R42,1–20.
Lau,N.C.,Lim,L.P.,Weinstein,E.G.,andBartel,D.P.(2001).An
abundantclassoftinyRNAswithprobableregulatoryrolesin
e294,858–862.
Lee,R.C.,andAmbros,V.(2001).AnextensiveclassofsmallRNAs
e294,862–864.
Lee,R.C.,Feinbaum,R.L.,andAmbros,V.(1993).s
heterochronicgenelin-4encodessmallRNAswithantisensecom-
75,843–854.
Lee,Y.,Jeon,K.,Lee,J.T.,Kim,S.,andKim,V.N.(2002).MicroRNA
maturation:
J.21,4663–4670.
Lee,Y.,Ahn,C.,Han,J.,Choi,H.,Kim,J.,Yim,J.,Lee,J.,Provost,
P.,Radmark,O.,Kim,S.,andKim,V.N.(2003).ThenuclearRNase
425,415–419.
Lewis,B.P.,Shih,I.,Jones-Rhoades,M.W.,Bartel,D.P.,andBurge,
C.B.(2003).115,
787–798.
Li,H.,Li,W.X.,andDing,S.W.(2002).Inductionandsuppression
e296,1319–1321.
Lim,L.P.,Lau,N.C.,Weinstein,E.G.,Abdelhakim,A.,Yekta,S.,
Rhoades,M.W.,Burge,C.B.,andBartel,D.P.(2003a).Themicro-
ev.17,991–1008.
Lim,L.P.,Glasner,M.E.,Yekta,S.,Burge,C.B.,andBartel,D.P.
(2003b).e299,1540.
Lin,S.Y.,Johnson,S.M.,Abraham,M.,Vella,M.C.,Pasquinelli,A.,
Gamberi,C.,Gottlieb,E.,andSlack,F.J.(2003).s
hunchbackhomolog,hbl-1,controlstemporalpatterningandisa
4,639–650.
Lingel,A.,Simon,B.,Izaurralde,E.,andSattler,M.(2003).Structure
andnucleic-acidbindingoftheDrosophilaArgonaute2PAZdomain.
Nature426,465–469.
Llave,C.,Kasschau,K.D.,Rector,M.A.,andCarrington,J.C.(2002a).
Cell14,1605–1619.
Llave,C.,Xie,Z.,Kasschau,K.D.,andCarrington,J.C.(2002b).
CleavageofScarecrow-likemRNAtargetsdirectedbyaclassof
e297,2053–2056.
Lund,E.,Gu
¨
ttinger,S.,Calado,A.,Dahlberg,J.E.,andKutay,U.
(2004).e303,95–98.
Martinez,J.,Patkaniowska,A.,Urlaub,H.,Luhrmann,R.,andTuschl,
T.(2002).Single-strandedantisensesiRNAsguidetargetRNAcleav-
110,563–574.
McConnell,J.R.,Emery,J.,Eshed,Y.,Bao,N.,Bowman,J.,and
Barton,M.K.(2001).RoleofPHABULOSAandPHAVOLUTAinde-
411,709–713.
Meneely,P.M.,andHerman,R.K.(1979).Lethals,sterilesanddefi-
cienciesinaregionoftheXchromosomeofCaenorhabditiselegans.
Genetics92,99–115.
Mette,M.F.,Aufsatz,W.,Winden,J.v.d.,Matzke,M.A.,andMatzke,
A.J.(2000).Transcriptionalsilencingandpromotermethylationtrig-
.19,5194–5201.
Mette,M.F.,vanderWinden,J.,Matzke,M.,andMatzke,A.J.(2002).
ShortRNAscanidentifynewcandidatetransposableelementfami-
hysiol.130,6–9.
Michael,M.Z.,O’Connor,S.M.,vanHolstPellekaan,N.G.,Young,
G.P.,andJames,R.J.(2003).Reducedaccumulationofspecific
Res.1,882–91.
Mochizuki,K.,Fine,N.A.,Fujisawa,T.,andGorovsky,M.A.(2002).
Analysisofapiwi-relatedgeneimplicatessmallRNAsingenome
110,689–699.
Moss,E.G.,Lee,R.C.,andAmbros,V.(1997).Thecoldshockdomain
sandis
88,637–646.
Mourelatos,Z.,Dostie,J.,Paushkin,S.,Sharma,A.,Charroux,B.,
Abel,L.,Rappsilber,J.,Mann,M.,andDreyfuss,G.(2002).miRNPs:a
novelclassofribonucleoproteinscontainingnumerousmicroRNAs.
GenesDev.16,720–728.
Mourrain,P.,Beclin,C.,Elmayan,T.,Feuerbach,F.,Godon,C.,
Morel,J.B.,Jouette,D.,Lacombe,A.M.,Nikic,S.,Picault,N.,etal.
(2000).ArabidopsisSGS2andSGS3genesarerequiredforposttran-
101,
533–542.
Nyka
¨
nen,A.,Haley,B.,andZamore,P.D.(2001).ATPrequirements
andsmallinterferingRNAstructureintheRNAinterferencepathway.
Cell107,309–321.
Ohler,U.,Yekta,S.,Lim,L.P.,Bartel,D.P.,andBurge,C.B.(2004).
Patternsofflankingsequenceconservationandacharacteristic
,inpress.
Olsen,P.H.,andAmbros,V.(1999).Thelin-4regulatoryRNAcontrols
developmentaltiminginCaenorhabditiselegansbyblockingLIN-14
.216,
671–680.
Palatnik,J.F.,Allen,E.,Wu,X.,Schommer,C.,Schwab,R.,Carring-
ton,J.C.,andWeigel,D.(2003).Controlofleafmorphogenesisby
425,257–263.
Papp,I.,Mette,M.F.,Aufsatz,W.,Daxinger,L.,Schauer,S.E.,Ray,
A.,vanderWinden,J.,Matzke,M.,andMatzke,A.J.(2003).Evidence
fornuclearprocessingofplantmicroRNAandshortinterferingRNA
hysiol.132,1382–1390.
Park,W.,Li,J.,Song,R.,Messing,J.,andChen,X.(2002).CARPEL
FACTORY,aDicerhomolog,andHEN1,anovelprotein,actinmi-
.12,1484–
1495.
Parrish,S.,Fleenor,J.,Xu,S.,Mello,C.,andFire,A.(2000).Func-
tionalanatomyofadsRNAtrigger:differentialrequirementforthe
6,1077–1087.
Pasquinelli,A.E.,Reinhart,B.J.,Slack,F.,Martindale,M.Q.,Kuroda,
M.,Maller,B.,Srinivasan,A.,Fishman,M.,Hayward,D.,Ball,E.,et
al.(2000).Conservationacrossanimalphylogenyofthesequence
andtemporalregulationofthe21nucleotidelet-7heterochronic
408,86–89.
Pickford,A.S.,Catalanotto,C.,Cogoni,C.,andMacino,G.(2002).
.46,277–303.
Pusch,O.,Boden,D.,Silbermann,R.,Lee,F.,Tucker,L.,andRam-
ratnam,B.(2003).Nucleotidesequencehomologyrequirementsof
cAcidsRes.31,6444–6449.
Reinhart,B.J.,andBartel,D.P.(2002).SmallRNAscorrespondto
e297,1831.
Reinhart,B.J.,Slack,F.J.,Basson,M.,Bettinger,J.C.,Pasquinelli,
A.E.,Rougvie,A.E.,Horvitz,H.R.,andRuvkun,G.(2000).The21
nucleotidelet-7RNAregulatesdevelopmentaltiminginCaenorhab-
403,901–906.
Reinhart,B.J.,Weinstein,E.G.,Rhoades,M.W.,Bartel,B.,andBar-
tel,D.P.(2002).ev.16,1616–1626.
Rhoades,M.W.,Reinhart,B.J.,Lim,L.P.,Burge,C.B.,Bartel,B.,
andBartel,D.P.(2002).
110,513–520.
Saxena,S.,Jonsson,Z.O.,andDutta,A.(2003).SmallRNAswith
a-
tionsforoff-targetactivityofsmallinhibitoryRNAinmammalian
.278,44312–44319.
Schauer,S.E.,Jacobsen,S.E.,Meinke,D.W.,andRay,A.(2002).
DICER-LIKE1:blindmenandelephantsinArabidopsisdevelopment.
TrendsPlantSci.7,487–491.
Schwarz,D.S.,Hutva
´
gner,G.,Haley,B.,andZamore,P.D.(2002).
EvidencethatsiRNAsfunctionasguides,notprimers,intheDro-
10,537–548.
Schwarz,D.S.,Hutvagner,G.,Du,T.,Xu,Z.,Aronin,N.,andZamore,
Review
297
P.D.(2003).AsymmetryintheassemblyoftheRNAienzymecom-
115,199–208.
Seggerson,K.,Tang,L.,andMoss,E.G.(2002).Twogeneticcircuits
represstheCaenorhabditiselegansheterochronicgenelin-28after
.243,215–225.
Seitz,H.,Youngson,N.,Lin,S.P.,Dalbert,S.,Paulsen,M.,Bachelle-
rie,J.P.,Ferguson-Smith,A.C.,andCavaille,J.(2003).Imprinted
microRNAgenestranscribedantisensetoareciprocallyimprinted
.34,261–262.
Sempere,L.F.,Sokol,N.S.,Dubrovsky,E.B.,Berger,E.M.,and
Ambros,V.(2003).TemporalregulationofmicroRNAexpressionin
Drosophilamelanogastermediatedbyhormonalsignalsandbroad-
.259,9–18.
Slack,F.J.,Basson,M.,Liu,Z.,Ambros,V.,Horvitz,H.R.,andRuv-
kun,G.(2000).shetero-
chronicpathwaybetweenthelet-7regulatoryRNAandtheLIN-29
5,659–669.
Smardon,A.,Spoerke,J.M.,Stacey,S.C.,Klein,M.E.,Mackin,N.,
andMaine,E.M.(2000).EGO-1isrelatedtoRNA-directedRNApoly-
meraseandfunctionsingerm-linedevelopmentandRNAinterfer-
.10,169–178.
Song,J.J.,Liu,J.,Tolia,N.H.,Schneiderman,J.,Smith,S.K.,Mar-
tienssen,R.A.,Hannon,G.J.,andJoshua-Tor,L.(2003).Thecrystal
structureoftheArgonaute2PAZdomainrevealsanRNAbinding
.10,1026–1032.
Stark,A.,Brennecke,J.,Russell,R.B.,andCohen,S.M.(2003).Iden-
ol.1,E60.
Tabara,H.,Sarkissian,M.,Kelly,W.G.,Fleenor,J.,Grishok,A.,Tim-
mons,L.,Fire,A.,andMello,C.C.(1999).Therde-1gene,RNA
interference,99,
123–132.
Tang,G.,Reinhart,B.J.,Bartel,D.P.,andZamore,P.D.(2003).A
ev.
17,49–63.
Vance,V.,andVaucheret,H.(2001).RNAsilencinginplants-defense
e292,2277–2280.
Volpe,T.,Kidner,C.,Hall,I.,Teng,G.,Grewal,S.,andMartienssen,
R.(2002).HeterochromaticsilencingandhistoneH3lysine9methyl-
e297,1833–1837.
Weigel,D.,Ahn,J.H.,Blazquez,M.A.,Borevitz,J.O.,Christensen,
S.K.,Fankhauser,C.,Ferrandiz,C.,Kardailsky,I.,Malancharuvil,
E.J.,Neff,M.M.,etal.(2000).
Physiol.122,1003–1013.
Wightman,B.,Burglin,T.R.,Gatto,J.,Arasu,P.,andRuvkun,G.
(1991).Negativeregulatorysequencesinthelin-143Ј-untranslated
regionarenecessarytogenerateatemporalswitchduringCaeno-
ev.5,1813–1824.
Wightman,B.,Ha,I.,andRuvkun,G.(1993).Posttranscriptional
regulationoftheheterochronicgenelin-14bylin-4mediatestempo-
75,855–862.
Xie,Z.,Kasschau,K.D.,andCarrington,J.C.(2003).Negativefeed-
backregulationofDicer-like1inArabidopsisbymicroRNA-guided
.13,784–789.
Xu,P.,Vernooy,S.Y.,Guo,M.,andHay,B.A.(2003).TheDrosophila
microRNAmir-14suppressescelldeathandisrequiredfornormal
.13,790–795.
Yan,K.S.,Yan,S.,Farooq,A.,Han,A.,Zeng,L.,andZhou,M.M.
(2003).StructureandconservedRNAbindingofthePAZdomain.
Nature426,468–474.
Yi,R.,Qin,Y.,Macara,I.G.,andCullen,B.R.(2003).Exportin-5
mediatesthenuclearexportofpre-microRNAsandshorthairpin
ev.17,3011–3016.
Zamore,P.D.,Tuschl,T.,Sharp,P.A.,andBartel,D.P.(2000).RNAi:
double-strandedRNAdirectstheATP-dependentcleavageof
101,25–33.
Zeng,Y.,andCullen,B.R.(2003).Sequencerequirementsformicro
9,112–123.
Zeng,Y.,Wagner,E.J.,andCullen,B.R.(2002).Bothnaturaland
designedmicroRNAscaninhibittheexpressionofcognatemRNAs
9,1327–1333.
Zeng,Y.,Yi,R.,andCullen,B.R.(2003).MicroRNAsandsmallin-
terferingRNAscaninhibitmRNAexpressionbysimilarmechanisms.
100,9779–9784.
Zhang,H.,Kolb,F.A.,Brondani,V.,Billy,E.,andFilipowicz,W.(2002).
HumanDicerpreferentiallycleavesdsRNAsattheirterminiwithout
.21,5875–5885.
Zilberman,D.,Cao,X.,andJacobsen,S.E.(2003).ARGONAUTE4
controloflocus-specificsiRNAaccumulationandDNAandhistone
e299,716–719.
版权声明:本文标题:MicroRNAs Genomics, Biogenesis,Mechanism,and Function 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/free/1712926151h622541.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论