admin 管理员组文章数量: 887021
概述
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
前言
图像/视频拼接的主要目的是为了解决相机视野(FOV-Field Of View)限制,生成更宽的FOV图像/视频场景。视频拼接在体育直播、全景显示、数字娱乐、视频处理中都被广泛应用,同时视频/图像拼接涉及到矫正图像、对其与匹配图像、融合、统一光照、无缝连接、多尺度重建等各个图像算法模型与细节处理,可以说是图像处理技术的综合运用。特别是最近几年收到深度学习的影响,各种基于深度学习的图像对齐与拼接技术也取得了长足发展。
01.图像拼接流程
图像拼接流程主要是针对输入系列视频帧或者图像,基于像素像素或者特征点相似然后对齐图像、融合对齐之后的图像,更新全景图像拼接结果,图示如下:
最常见就是基于SIFT/SURF/OBR/AKAZE等方法实现特征提取,基于RANSAC等方法实现对齐,基于图像融合或者无缝克隆算法实现对齐图像的拼接。
针对不同的拼接方式可以分为图像拼接、视频拼接、全景拼接。针对图像拼接可以分为像素相似与特征相似;视频拼接又分为固定相机、移动相机;全景拼接分为单相机、相机列阵、鱼眼相机列阵。图示如下:
02.深度学习方法
通过卷积神经网络CNN可以更好的学习与提取图像特征、通过语义分割获取初始匹配、然后对齐,图示如下:
其中IA与IB是输入图像,CNN是预训练的特征提取网络模型,匹配网络与回归网络。其中匹配网络主要是计算相似程度,其网络计算方式如下:
回归网络的结构如下:
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
本文标签: 概述
版权声明:本文标题:概述 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1686693781h25785.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论