admin 管理员组文章数量: 887018
2023年12月23日发(作者:制作网页时不能使用图案作为网页背景)
指导老师 xxx
1
回归模型分析
工商07-4班 xxx
070614409
我国改革开放以来固定资产投资与GDP关系分析
【摘要】本文旨在对我国改革开放以来固定资产投资与GDP关系进行计量分析。首先我们对已有的部分关于固定资产投资的观点和评论进行了评述;然后再收集的数据的基础上利用EViews软件进行了计量分析,从数据本身出发验证了两者的因果关系,并寻求设定合理的经济关系模型;接着运用软件对设定的模型进行了参数估计,检验及修正;最后我们利用所
2
得的结果进行了经济预测以评估所得结果的价值并对结果本身提出了政策意见。
一 问题的提出
我国自改革开放以来已保持了国民经济20多年的快速增长,GDP年均增长率在10%以上,如此高的增长速度不经要引起人们对其增长动力或原因的兴趣。今年来关于投资,消费和出口“三驾马车”拉动经济增长的理论较为突出。尤其是进入90年代后直到90年代末到新世纪最近几年,不论是学术界还是公众媒体都对固定资产投资的高增长表现出不同程度的担忧,因而才引出关于经济软着陆和怎样减少固定资产投资的讨论。那么,究竟固定资产投资同GDP之间的关系如何?新世纪的前后几年是不是存在固定资产投资过热拉动经济过热的情况?本文通过回归分析给出答案。
二 数据收集
为进行计量分析,我们寻求改革开放至今的GDP和固定资产的可比数据,数据来源为《中国统计年鉴》及中国国家统计局网站()的数据资料,两项数据样本数都为27,满足一元回归的要求。
1978-2004年GDP及固定资产投资年度数据
obs
1978
1979
1980
1981
1982
1983
1984
GDP
3624.100
4038.200
4517.800
4862.400
5294.700
7171.000
7171.000
FAI
780.2000
846.2000
910.9000
961.0000
1230.400
1430.100
1832.900
3
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
8964.400
10202.20
11962.50
14928.30
16909.20
18547.90
21617.80
26638.10
34634.40
46759.40
58478.10
67884.60
74462.60
78345.20
82067.50
89468.10
97314.80
104790.6
117251.9
136515.0
2543.200
3120.600
3791.700
4753.800
4410.400
4517.000
5594.500
8080.100
13072.30
17042.94
20019.26
22974.03
24941.10
28406.17
29854.71
32917.73
37213.49
43499.91
55566.61
70072.71
三 数据分析
由于相关数据为时间序列,很可能为非平稳序列,直接回归可能造成伪回归。因此对
4
两时间序列进行平稳性检验,方法为ADF检验。EViews5默认情况下检验结果如下:
GDP的ADF检验
Null Hypothesis: GDP has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic based on SIC, MAXLAG=6)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 2.588925 1.0000
Test critical values: 1% level -3.737853
5% level -2.991878
10% level -2.635542
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(GDP)
Method: Least Squares
Date: 05/28/05 Time: 16:45
Sample (adjusted): 1981 2004
Included observations: 24 after adjustments
Variable CoefficieStd. Error t-Statistic Prob.
5
nt
GDP(-1) 0.045772 0.017680 2.588925 0.0175
D(GDP(-1)) 1.327562 0.217150 6.113574 0.0000
-0.73283D(GDP(-2)) 1 0.231507 -3.165485 0.0049
C 399.8333 664.7932 0.601440 0.5543
R-squared 0.851066 Mean dependent var 5499.883
Adjusted R-squared 0.828726 S.D. dependent var 4860.139
S.E. of regression 2011.383 Akaike info criterion 18.20204
8091321Sum squared resid 9 Schwarz criterion 18.39839
-214.424Log likelihood 5 F-statistic 38.09586
Durbin-Watson stat 2.019994 Prob(F-statistic) 0.000000
FAI的ADF检验
Null Hypothesis: FAI has a unit root
Exogenous: Constant
Lag Length: 6 (Automatic based on SIC, MAXLAG=6)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic 4.261202 1.0000
6
Test critical values: 1% level -3.808546
5% level -3.020686
10% level -2.650413
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(FAI)
Method: Least Squares
Date: 05/28/05 Time: 16:48
Sample (adjusted): 1985 2004
Included observations: 20 after adjustments
CoefficieVariable nt Std. Error t-Statistic Prob.
FAI(-1) 0.259573 0.060915 4.261202 0.0011
D(FAI(-1)) 0.762570 0.231930 3.287925 0.0065
-0.27295D(FAI(-2)) 7 0.300382 -0.908699 0.3814
-0.74513D(FAI(-3)) 3 0.292414 -2.548210 0.0255
D(FAI(-4)) -0.608990.290971 -2.092966 0.0583
7
3
D(FAI(-5)) 0.739293
-1.25799D(FAI(-6))
C
5
189.1530
0.331724 -3.792298
376.0138 0.503048
0.0026
0.6240
0.338712 2.182655 0.0497
R-squared 0.956233 Mean dependent var 3411.991
3814.703
16.95094
Adjusted R-squared 0.930703 S.D. dependent var
S.E. of regression 1004.198 Akaike info criterion
1210097Sum squared resid 4 Schwarz criterion
-161.509Log likelihood 4 F-statistic
17.34923
37.45431
0.000000 Durbin-Watson stat 2.303034 Prob(F-statistic)
由上述结果可以看到两序列的ADF统计量均大于5%水平下的临界值,因而不能拒绝原假设,序列为非平稳序列。
由于两序列均为非平稳序列,因而需要进行两序列协整的检验,否则其回归将是没有意义的。
协整检验第一步,对两序列运用OLS法进行简单一元回归,得到回归参数估计和残差序列。
回归结果:
Dependent Variable: GDP
Method: Least Squares
8
Date: 05/30/05 Time: 02:57
Sample: 1978 2004
Included observations: 27
CoefficieVariable nt Std. Error t-Statistic Prob.
C 7569.484 2054.444 3.684445 0.0011
FAI 2.157312 0.083696 25.77556 0.0000
R-squared 0.963736 Mean dependent var 42756.36
Adjusted R-squared 0.962285 S.D. dependent var 41079.01
S.E. of regression 7977.694 Akaike info criterion 20.87787
Sum squared resid 1.59E+09 Schwarz criterion 20.97386
-279.851Log likelihood 3 F-statistic 664.3797
Durbin-Watson stat 0.288516 Prob(F-statistic) 0.000000
残差序列
Last updated: 05/30/05 - 02:57
1978 -5628.519
1979 -5356.801
9
1980 -5016.780
1981 -4780.261
1982 -4929.141
1983 -3483.656
1984 -4352.621
1985 -4091.560
1986 -4099.393
1987 -3786.865
1988 -2896.615
1989 -174.8939
1990 1233.837
1991 1979.233
1992 1637.317
1993 -1136.117
1994 2422.972
1995 7720.820
1996 10752.96
1997 13087.37
1998 9494.736
1999 10092.08
2000 10884.79
2001 9464.196
10
2002 3378.225
2003 -10192.12
2004 -22223.20
协整检验第二步,运用ADF法检验残差序列平稳性从而检验两序列是否存在协整。
残差序列ADF检验
Null Hypothesis: ET has a unit root
Exogenous: Constant
Lag Length: 5 (Automatic based on SIC, MAXLAG=6)
t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -3.730854 0.0113
Test critical values: 1% level -3.788030
5% level -3.012363
10% level -2.646119
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(ET)
Method: Least Squares
Date: 05/30/05 Time: 03:25
Sample (adjusted): 1984 2004
11
Included observations: 21 after adjustments
CoefficieVariable nt Std. Error t-Statistic Prob.
-0.37046ET(-1) 8 0.099298 -3.730854 0.0022
D(ET(-1)) 0.962063 0.162816 5.908896 0.0000
D(ET(-2)) 0.461881 0.288497 1.600993 0.1317
D(ET(-3)) 0.245461 0.277022 0.886071 0.3905
D(ET(-4)) 0.307336 0.272255 1.128853 0.2779
D(ET(-5)) 1.203676 0.285665 4.213592 0.0009
-1293.08C 8 582.6998 -2.219132 0.0435
-892.358R-squared 0.846063 Mean dependent var 4
Adjusted R-squared 0.780090 S.D. dependent var 4690.288
S.E. of regression 2199.491 Akaike info criterion 18.49104
6772866Sum squared resid 3 Schwarz criterion 18.83922
-187.155Log likelihood 9 F-statistic 12.82436
Durbin-Watson stat 1.764056 Prob(F-statistic) 0.000055
12
由结果显示残差序列的ADF统计量小于5%水平下的临界值,因而不能拒绝原假设残差序列是平稳的,因而就有两序列间存在协整。也证实了两序列间存在长期稳定关系。
由于两序列被证实存在长期稳定关系,进一步检验GDP同固定资产投资间因果关系及程度。采用检验方法为Granger检验。
调整滞后长度为2-5,得到如下结果。
Pairwise Granger Causality Tests
Date: 05/30/05 Time: 03:33
Sample: 1978 2004
Lags: 2
Null Hypothesis: Obs F-Statistic Probability
GDP does not Granger Cause FAI 25 1.51006 0.24503
FAI does not Granger Cause GDP 12.8015 0.00026
Pairwise Granger Causality Tests
Date: 05/30/05 Time: 03:34
Sample: 1978 2004
Lags: 3
Null Hypothesis: Obs F-Statistic Probability
GDP does not Granger Cause FAI 24 0.60966 0.61786
13
FAI does not Granger Cause GDP 6.40575 0.00422
Pairwise Granger Causality Tests
Date: 05/30/05 Time: 03:34
Sample: 1978 2004
Lags: 4
Null Hypothesis: Obs F-Statistic Probability
GDP does not Granger Cause FAI 23 0.43905 0.77841
FAI does not Granger Cause GDP 4.74551 0.01249
Pairwise Granger Causality Tests
Date: 05/30/05 Time: 03:34
Sample: 1978 2004
Lags: 5
Null Hypothesis: Obs F-Statistic Probability
GDP does not Granger Cause FAI 22 3.05627 0.05695
FAI does not Granger Cause GDP 3.69720 0.03297
对上述结果总结如下:
14
滞后长度m=n
2
Granger因果性
GDP->FAI
FAI->GDP
F值 P值 结论
拒绝
不拒绝
拒绝
不拒绝
拒绝
不拒绝
不拒绝
不拒绝
1.51006 0.24503
12.8015
0.60966
6.40575
0.43905
4.74551
3.05627
3.6972
0.00026
0.61786
0.00422
0.77841
0.01249
0.05695
0.03297
3 GDP->FAI
FAI->GDP
4 GDP->FAI
FAI->GDP
5 GDP->FAI
FAI->GDP
可见GDP与固定资产投资存在明显的因果关系,受制于序列的不平稳才使得结论看上去仍受滞后长度的影响。。
四 模型设定,参数估计与检验
由数据分析可知,GDP与固定资产投资不但存在长期稳定关系更存在因果关系。因此可设定初步模型为:
GDP=C+β1* FAI+u
应用OLS法进行参数估计。得到如下结果:
Dependent Variable: GDP
Method: Least Squares
Date: 05/31/05 Time: 14:13
Sample: 1978 2004
Included observations: 27
Variable CoefficieStd. Error t-Statistic Prob.
15
nt
C
FAI
7569.484
2.157312
2054.444
0.083696
3.684445
25.77556
0.0011
0.0000
R-squared 0.963736 Mean dependent var 42756.36
41079.01
20.87787
20.97386
Adjusted R-squared 0.962285 S.D. dependent var
S.E. of regression
Sum squared resid
7977.694 Akaike info criterion
1.59E+09 Schwarz criterion
-279.851Log likelihood 3 F-statistic 664.3797
0.000000 Durbin-Watson stat 0.288516 Prob(F-statistic)
a经济意义检验:由经济理论以及此前的因果检验可知固定资产投资与GDP存在长期稳定的正线性关系,模型估计与此相符。
b统计推断检验:可决系数为0.963736,模型拟合情况较理想。T统计量为25.77556而显著水平0.05下临界值为2.060因此T统计量显著。说明参数估计是显著的,固定资产投资对GDP有显著影响。F统计量为664.3797,0.05显著水平下临界值为3.33,因此F统计量也是显著的。说明模型设定也是显著的。
c计量经济检验
1 多重共线性检验。由于是一元回归不存在多重共线性问题,无须检验。
2 异方差检验。
16
2.00E+071.60E+071.20E+072E8.00E+064.00E+060.00E+FAI
ARCH检验,设定滞后期为3得到如下结果
ARCH Test:
F-statistic 10.08751 Probability 0.000294
Obs*R-squared 14.45014 Probability 0.002352
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 05/31/05 Time: 14:53
Sample (adjusted): 1981 2004
Included observations: 24 after adjustments
CoefficieVariable nt Std. Error t-Statistic Prob.
17
C
RESID^2(-1)
9059274.
1.820983
-2.13
0.421753
0.444520
4.317653
0.6614
0.0003
RESID^2(-2)
RESID^2(-3)
8
1.488624
0.567807 -3.775697
0.491305 3.029939
0.0012
0.0066
6273110R-squared 0.602089 Mean dependent var 7
1.04E+08 Adjusted R-squared 0.542403 S.D. dependent var
7048675S.E. of regression
Sum squared resid
1 Akaike info criterion
9.94E+16 Schwarz criterion
-465.569Log likelihood 1 F-statistic
39.13076
39.32710
10.08751
0.000294 Durbin-Watson stat 1.787900 Prob(F-statistic)
比较obj*R2=14.45014>显著程度0.05,自由度P=3时的λ临界值7.81473。因此决绝原假设,判断模型误差项存在异方差。
3 自相关检验。
18
5000RESID10000-1000-2000-3000-4040006000RESID(-1)
由此前回归结果可知D-W统计量为0.288516。给定显著水平0.05,查D-W表n=27,k=1得下限临界值为1.316,上限临界值为1.469。而0.288516<下限1.316因此模型误差项存在一阶自相关。
五 模型修正
(一)异方差修正
WLS估计法。生成权数w=1/fai的估计结果为
Dependent Variable: GDP
Method: Least Squares
Date: 05/31/05 Time: 15:16
Sample: 1978 2004
Included observations: 27
Weighting series: 1/FAI
CoefficieVariable nt Std. Error t-Statistic Prob.
19
C 1984.233 211.1094 9.399078 0.0000
FAI 2.757995 0.109874 25.10151 0.0000
Weighted Statistics
R-squared 0.779430 Mean dependent var 10214.52
Adjusted R-squared 0.770607 S.D. dependent var 2721.756
S.E. of regression 1303.584 Akaike info criterion 17.25481
4248329Sum squared resid 9 Schwarz criterion 17.35080
-230.939Log likelihood 9 F-statistic 630.0859
Durbin-Watson stat 0.677084 Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.878099 Mean dependent var 42756.36
Adjusted R-squared 0.873223 S.D. dependent var 41079.01
S.E. of regression 14626.47 Sum squared resid 5.35E+09
Durbin-Watson stat 0.201485
换用对数变换法将gdp和fai替换成Lgdp和Lfai。的如下结论
Dependent Variable: LGDP
Method: Least Squares
20
Date: 05/31/05 Time: 15:22
Sample: 1978 2004
Included observations: 27
CoefficieVariable nt Std. Error t-Statistic Prob.
C
LFAI
2.713661
0.829008
0.115957
0.012904
23.40222
64.24241
0.0000
0.0000
R-squared 0.993979 Mean dependent var 10.06867
1.208213
-1.78592Adjusted R-squared 0.993738 S.D. dependent var
S.E. of regression 0.095609 Akaike info criterion 1
-1.68993Sum squared resid
Log likelihood
0.228525 Schwarz criterion
26.10993 F-statistic
3
4127.088
0.000000 Durbin-Watson stat 0.876328 Prob(F-statistic)
比较两种方法可知gdp与固定资产投资在对数线性回归下拟合最好!此时的ARCH检验结果为
ARCH Test:
F-statistic
Obs*R-squared
0.685945 Probability
2.239024 Probability
0.571103
0.524303
21
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 05/31/05 Time: 15:24
Sample (adjusted): 1981 2004
Included observations: 24 after adjustments
CoefficieVariable nt Std. Error t-Statistic Prob.
C 0.006041 0.003046 1.983333 0.0612
RESID^2(-1) 0.173273 0.226838 0.763864 0.4539
-0.01532RESID^2(-2) 0 0.226278 -0.067705 0.9467
RESID^2(-3) 0.232025 0.225640 1.028298 0.3161
R-squared 0.093293 Mean dependent var 0.009341
-0.04271Adjusted R-squared 3 S.D. dependent var 0.007696
-6.70339S.E. of regression 0.007859 Akaike info criterion 3
-6.50705Sum squared resid 0.001235 Schwarz criterion 1
22
Log likelihood 84.44072 F-statistic 0.685945
0.571103 Durbin-Watson stat 1.892617 Prob(F-statistic)
其obj*R2=2.239024<临界值7.81473。异方差修正!
此时模型修正为:
LGDP=C+β1* LFAI+u
二 自相关修正
广义差分。此前结论有DW=0.876328,因此计算出β估计量为0.561836,从而分别得到GDP和FAI的差分序列,再进行OLS参数估计得到:
Dependent Variable: DLGDP
Method: Least Squares
Date: 06/07/05 Time: 02:13
Sample (adjusted): 1979 2004
Included observations: 26 after adjustments
CoefficienVariable t Std. Error t-Statistic Prob.
C 1.275681 0.104470 12.21095 0.0000
DLFAI 0.807090 0.025677 31.43270 0.0000
R-squared 0.976285 Mean dependent var 4.521712
Adjusted R-squared 0.975297 S.D. dependent var 0.512440
S.E. of regression 0.080542 Akaike info criterion -2.126285
Sum squared resid 0.155686 Schwarz criterion -2.029508
Log likelihood 29.64170 F-statistic 988.0147
Durbin-Watson stat 1.663055 Prob(F-statistic) 0.000000
D-W=1.663055,此时的不能拒绝区域为(1.464,2.531)因此D-W落在不能拒绝的区域,修正了自相关。
再使用迭代法可得到:
Dependent Variable: LGDP
Method: Least Squares
23
Date: 05/31/05 Time: 15:38
Sample (adjusted): 1979 2004
Included observations: 26 after adjustments
Convergence achieved after 15 iterations
CoefficieVariable nt Std. Error t-Statistic Prob.
C 3.059726 0.387301 7.900121 0.0000
LFAI 0.791156 0.041009 19.29245 0.0000
AR(1) 0.670792 0.177606 3.776861 0.0010
R-squared 0.995495 Mean dependent var 10.14072
Adjusted R-squared 0.995103 S.D. dependent var 1.171495
-2.05653S.E. of regression 0.081979 Akaike info criterion 9
-1.91137Sum squared resid 0.154573 Schwarz criterion 4
Log likelihood 29.73501 F-statistic 2541.114
Durbin-Watson stat 1.815953 Prob(F-statistic) 0.000000
Inverted AR Roots .67
DW=1.815953Y也落在不能拒绝的区域,修正了自相关。
比较两种方法取得的结果,可知,使用迭代法更为准确。
24
六 时期考虑
为了验证是否在近10年内的固定资产投资是否过热,我们运用上述方法和结果对1994-2004期间的数据进行了分析,得到如下结果:
Dependent Variable: LGDP
Method: Least Squares
Date: 05/31/05 Time: 16:33
Sample: 1994 2004
Included observations: 11
Convergence achieved after 6 iterations
CoefficienVariable t Std. Error t-Statistic Prob.
C 5.891059 0.547243 10.76497 0.0000
LFAI 0.531348 0.050359 10.55127 0.0000
AR(1) 0.627602 0.058372 10.75170 0.0000
R-squared 0.996148 Mean dependent var 11.32730
Adjusted R-squared 0.995185 S.D. dependent var 0.309808
S.E. of regression 0.021497 Akaike info criterion -4.614782
Sum squared resid 0.003697 Schwarz criterion -4.506265
Log likelihood 28.38130 F-statistic 1034.457
Durbin-Watson stat 2.062084 Prob(F-statistic) 0.000000
Inverted AR Roots .63
可见模型拟合良好,但固定资产投资对GDP的系数明显下降,证明了其拉动GDP增长的效率是下降了。而在GDP增速和经济结构均无重大变化的情况下,不难得出固定资产投资必然增长过快即过热的结论!
七 模型结论:
1978-2004修正后的模型I为
LGDP = 3.059725644 + 0.7911561329*LFAI
(0.387301) (0.041009)
t= (7.900121) (19.29245)
经济意义:固定资产投资每增长1%将拉动GDP增长0.7911561329%,可见固定资产投资作为经济增长“三驾马车”的称谓名至实归。
25
1994-2004的模型II为
LGDP = 5.891059452 + 0.53134764*LFAI
(0.0547243) (0.050349)
t= (10.55127) (10.75170)
经济意义:固定资产投资每增加1%将拉动GDP增长0.53134764%,可见固定资产投资的拉动效率下降了,造成固定资产投资过热的原因之一。
八 模型预测应用效果
最新数据有2005年第一季度全国固定资产投资额为10583亿元,GDP为31318.98亿元。四月份固定资产投资额为3441.67亿元。
为保证准确性使用模型I进行预测。将一季度数据代入模型内有:
LGDP预测值=3.059725644 + 0.7911561329*ln10583
=10.39137286555
进而得GDP预测值=e(10.39137286555)=32577.36亿元
实际GDP值为31318.98,误差为(32577.36-31318.98)/31318.98*100%=4.01795%实证表明预测效果良好!
继续预测4月份的GDP:
LGDP预测值=3.059725644 + 0.7911561329*ln3441.67
=9.5
得到:GDP预测值=e(9.5)=13439.77亿元
26
版权声明:本文标题:回归模型分析 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1703329674h447165.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论