admin 管理员组文章数量: 887021
2023年12月23日发(作者:c语言中system pause)
2 1978-2011年的数据搜集
城市化率
17.92
18.96
19.39
20.16
21.13
21.62
23.01
23.71
24.52
25.32
25.81
26.21
26.41
26.94
27.46
27.99
28.51
29.04
30.48
31.91
33.35
34.78
36.22
37.66
39.09
40.53
41.76
42.99
43.9
44.94
45.68
46.59
年份
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
人均GDP
381
419
463
492
528
583
695
858
963
1112
1366
1519
1644
1893
2311
2998
4044
5046
5846
6420
6796
7159
7858
8622
9398
10542
12336
14185
16500
20169
23708
25575
城镇居民家庭人均可支配收入
343.4
405
477.6
500.4
535.3
564.6
652.1
739.1
900.9
1002.1
1180.2
1373.9
1510.2
1700.6
2026.6
2577.4
3496.2
4283
4838.9
5160.3
5425.1
5854
6280
6859.6
7702.8
8472.2
9421.6
10493
11759.5
13785.8
15780.8
17174.7
政府支出
1122.09
1281.79
1228.83
1138.41
1229.98
1409.52
1701.02
2004.25
2204.91
2262.18
2491.21
2823.78
3083.59
3386.62
3742.2
4642.3
5792.62
6823.72
7937.55
9233.56
10798.18
13187.67
15886.5
18902.58
22053.15
24649.95
28486.89
33930.28
40422.73
49781.35
62592.66
76299.93
城镇居民消费水平
405
425
489
521
536
558
618
765
872
998
1311
1466
1596
1840
2262
2924
3852
4931
5532
5823
6109
6405
6850
7113
7387
7901
8679
9410
10423
11904
13526
15025
3 REVIEWS模型建立及检验
3.1
散点图变化分析
3.1.1 GDPP(人均GDP)和CSH(城市化)的关系
30,00025,00020,000GDPP15,00010,0005,32CSH36404448
3.1.2
GDPP(人均GDP)和JMKZPSR(城镇居民家庭人均可支配收入)的关系
30,00025,00020,000GDPP15,00010,0005,000005,00010,000JMKZPSR15,00020,000
3.1.3
GDPP(人均GDP)和ZFZC(政府支出)的关系
30,00025,00020,000GDPP15,00010,0005,0000020,00040,000ZFZC60,00080,000
3.1.4
GDPP(人均GDP)和GMXFSP(城镇居民消费水平)
30,00025,00020,000GDPP15,00010,0005,000004,0008,000GMXFSP12,00016,000
3.2 Ganger检验
3.2.1首先,我们研究GDPP和CSH的因果检验。
Pairwise Granger Causality Tests
Date: 06/03/12 Time: 10:42
Sample: 1978 2009
Lags: 1
Null Hypothesis:
Obs F-Statistic Prob.
31
0.78247
0.57193
0.3839
0.4558
CSH does not Granger Cause GDPPP
GDPPP does not Granger Cause CSH
由表可知,CSH影响GDPP的概率较大,故可以将CSH作为自变量,GDPP为因变量。
3.2.2其次,我们研究GDPP和JMKZPSR的因果检验。
Pairwise Granger Causality Tests
Date: 06/03/12 Time: 10:44
Sample: 1978 2009
Lags: 1
Null Hypothesis:
Obs F-Statistic Prob.
31
0.24821
0.19484
0.6222
0.6623
JMKZPSR does not Granger Cause GDPP
GDPP does not Granger Cause JMKZPSR
由表可知, JMKZPSR影响GDPP的概率高,故可以将JMKZPSR作为自变量,GDPP作为因变量。
3.2.3紧接着,我们研究GDPP和ZFZC之间的因果关系。
Pairwise Granger Causality Tests
Date: 06/03/12 Time: 10:45
Sample: 1978 2009
Lags: 1
Null Hypothesis:
Obs F-Statistic Prob.
31
0.02024
0.33720
0.8879
0.5661
ZFZC does not Granger Cause GDPP
GDPP does not Granger Cause ZFZC
由表可知,GDPP和ZFZC相互影响,概率都比较大,所以可以将ZFZC作为自变
量。
3.2.4最后,我们研究GDPP和GMXFSP的因果关系。
Pairwise Granger Causality Tests
Date: 06/03/12 Time: 10:44
Sample: 1978 2009
Lags: 1
Null Hypothesis:
Obs F-Statistic Prob.
30
16.0251
7.44216
0.0004
0.0111
JMXFSP does not Granger Cause GDPP
GDPP does not Granger Cause JMXFSP
由表可知,GDPP和 JMXFSP的相关可能性都非常低,顾将JMXFSP作为自变量剔除。
3.3选择模型形式,做回归,描绘模型
估计模型:GDPCCSH2JMKZPRSZFZC
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 16:47
Sample: 1978 2011
Included observations: 34
Variable
C
CSH^2
ZFZC
JMKZPSR
R-squared
Coefficient
472.7725
-1.589601
0.096333
1.269763
Std. Error
178.0388
0.416496
0.011037
0.086591
t-Statistic
2.655446
-3.816604
8.728460
14.66399
Prob.
0.0126
0.0006
0.0000
0.0000
7863.882
9292.254
13.99865
14.17822
14.05989
1.179488
0.999337 Mean dependent var
0.999271 S.D. dependent var
250.9664 Akaike info criterion
1889524. Schwarz criterion
-233.9770 Hannan-Quinn criter.
15070.08 Durbin-Watson stat
0.000000
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
令YGDP
X1 CSH2
X2 JMKZPSR
X3 ZFZC
Y472.7725-1.589601x^1^0.096333x21.269763x3
178.0388
0.4164
0.011037
0.086591
R20.999337
R20.999271
DW1.179488
SE250.9664
F0.00
n33
3.4随机误差项的正态性检验(JB检验)
876543210-600-400-2Series: RESIDSample 1978 2009Observations 32Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis
Jarque-BeraProbability-1.56e-13 25.89469 606.3765-601.0734 246.4424-0.256965 4.277828 2.529290 0.282340
通过JB检验发现,估计模型随机误差项可能为正太分布的可能性P>5%,所以通过检验。
3.5 Ramsey reset test检验
Ramsey RESET Test:
F-statistic
Log likelihood ratio
Test Equation:
Dependent Variable: GDPP
Method: Least Squares
Date: 06/03/12 Time: 13:59
Sample: 1978 2009
4.085866 Prob. F(1,27)
4.509325 Prob. Chi-Square(1)
0.0533
0.0337
Included observations: 32
Variable
C
CSH^2
JMKZPSR
ZFZC
FITTED^2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
Coefficient
-44.45361
-0.208129
1.226143
-0.004762
8.81E-06
Std. Error t-Statistic Prob.
313.7799
0.798441
0.088068
0.051507
4.36E-06
-0.141671
-0.260669
13.92275
-0.092447
2.021353
0.8884
0.7963
0.0000
0.9270
0.0533
6325.906
7066.021
13.99197
14.22099
14.06788
1.060922
0.998943 Mean dependent var
0.998787 S.D. dependent var
Akaike info
246.1018 criterion
1635285. Schwarz criterion
Hannan-Quinn
-218.8715 criter.
6382.086 Durbin-Watson stat
0.000000
Prob.F值为0.533>5%,所以模型被误设可能性较小。
3.6 T、F检验,拟合优度检验
t-Statistic
2.288009
-3.385601
13.98170
7.726581
T值的绝对值>2,通过检验,说明此模型拟合优度较好。
Prob(F-statistic)
0.000000
F值为0,远远小于5%,说明此模型拟合优度较好。
R-squared 0.998784
R2=0.99,说明改模型可行性很大,拟合度好。
3.7 Wald Test检验,若 Prob. F>5%,接受约束条件
Wald Test:
Equation: Untitled
Test Statistic
F-statistic
Chi-square
Value
3.421460
3.421460
Value
2.792085
df Probability
(1, 28)
1
0.0749
0.0644
Std. Err.
1.509465
Null Hypothesis Summary:
Normalized Restriction (= 0)
-1 + C(2)^2 - 3*C(3) + C(4)
Delta method computed using analytic derivatives.
3.8邹氏突变检验:若 Prob. F<5%,认为该点很可能是突变点
通过观察整体数据较为平稳,未发现明显突变点,其中对1995年、2004年进行随机检测,如下图:
Chow Breakpoint Test: 1994
Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables
Equation Sample: 1978 2009
F-statistic
10.66037
32.68074
42.64146
Prob. F(4,24)
Prob. Chi-Square(4)
Prob. Chi-Square(4)
0.0000
0.0000
0.0000
Prob. F(4,24)
Prob. Chi-Square(4)
Prob. Chi-Square(4)
0.0000
0.0000
0.0000
Log likelihood ratio
Wald Statistic
Chow Breakpoint Test: 2004
Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables
Equation Sample: 1978 2009
F-statistic
51.32985
72.22598
205.3194
Log likelihood ratio
Wald Statistic
所以通过邹氏检验,发现无突变点。
3.9模型的比较:观察AIC和SC值的变化,若有下降的现象,该模型可能更好些。
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 19:12
Sample: 1978 2009
Included observations: 32
Variable
C
CSH^2
ZFZC
JMKZPSR
JMKZPSR^2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
Coefficient
-355.7275
1.175857
-0.157097
1.056712
5.91E-05
Std. Error
157.9942
0.448006
0.034252
0.058971
7.81E-06
t-Statistic
-2.251522
2.624645
-4.586449
17.91905
7.574526
Prob.
0.0327
0.0141
0.0001
0.0000
0.0000
6325.906
7066.021
12.99347
13.22249
13.06938
1.124435
0.999611 Mean dependent var
0.999553 S.D. dependent var
149.3804 Akaike info criterion
602491.2 Schwarz criterion
-202.8955 Hannan-Quinn criter.
17333.87 Durbin-Watson stat
0.000000
此时AIC12.99347 SC13.22249
原模型AIC13.99865 SC14.17822
通过比较发现 增加一个变量后的模型更适合
4 REVIEWS异方差检验及克服
4.1异方差检验
4.1.1图形法
400,000350,000300,000250,000RESID^2200,000150,000100,00050,32CSH
36404448
400,000350,000300,000250,000RESID^2200,000150,000100,00050,000005,00010,000JMKZPSR15,00020,000400,000350,000300,000250,000RESID^2200,000150,000100,00050,0000020,00040,000ZFZC
60,00080,0004.1.2 WHITE检验
Heteroskedasticity Test: White
F-statistic
Obs*R-squared
Scaled explained SS
4.375318 Prob. F(9,22)
20.53007 Prob. Chi-Square(9)
25.76099 Prob. Chi-Square(9)
0.0023
0.0149
0.0022
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 06/03/12 Time: 14:01
Sample: 1978 2009
Included observations: 32
Variable
C
CSH^2
(CSH^2)^2
(CSH^2)*JMKZPSR
(CSH^2)*ZFZC
JMKZPSR
JMKZPSR^2
JMKZPSR*ZFZC
ZFZC
ZFZC^2
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
Coefficient
8464.488
-201.3539
0.390429
-0.209972
0.006477
-13.46487
0.028131
-0.005733
46.12346
0.000277
Std. Error t-Statistic Prob.
329747.7
1601.322
1.982626
0.662189
0.073271
270.5561
0.065792
0.017857
50.20082
0.001399
0.025670
-0.125742
0.196925
-0.317087
0.088393
-0.049767
0.427570
-0.321084
0.918779
0.198082
0.9798
0.9011
0.8457
0.7542
0.9304
0.9608
0.6731
0.7512
0.3682
0.8448
58835.95
108225.6
25.58907
26.04711
25.74090
2.022294
0.641565 Mean dependent var
0.494932 S.D. dependent var
Akaike info
76913.92 criterion
1.30E+11 Schwarz criterion
Hannan-Quinn
-399.4251 criter.
4.375318 Durbin-Watson stat
0.002261
nR220.53007,由white检验知,在0.05,查2分布表,得临界值20.0537.81473,所以拒绝原假设,接受备择假设,表明模型存在异方差。
4.2异方差的修正
Dependent Variable: GDPP
Method: Least Squares
Date: 06/03/12 Time: 14:34
Sample: 1978 2009
Included observations: 32
Weighting series: 1/RESID^2
Variable
C
CSH
ZFZC
JMKZPSR
R-squared
Coefficient
849.1712
-48.90755
0.086467
1.185499
Std. Error t-Statistic Prob.
171.2264
8.460355
0.004839
0.028887
4.959347
-5.780791
17.86810
41.03955
0.0000
0.0000
0.0000
0.0000
633.4496
3246.371
3.209302
3.392519
3.270033
1.364803
6325.906
7066.021
2681534.
Weighted Statistics
0.999925 Mean dependent var
0.999917 S.D. dependent var
Akaike info
1.135960 criterion
36.13133 Schwarz criterion
Hannan-Quinn
-47.34883 criter.
124296.8 Durbin-Watson stat
0.000000
Unweighted Statistics
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
R-squared
Adjusted R-squared
S.E. of regression
Durbin-Watson stat
0.998268 Mean dependent var
0.998082 S.D. dependent var
309.4658 Sum squared resid
0.658206
4.3再次对修正后的模型做white检验
Heteroskedasticity Test: White
F-statistic
Obs*R-squared
Scaled explained SS
Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 06/03/12 Time: 14:41
Sample: 1978 2009
Included observations: 32
Collinear test regressors dropped from specification
Variable
Coefficient
Std. Error t-Statistic Prob.
1.09E+22 Prob. F(1,30)
32.00000 Prob. Chi-Square(1)
3.01E-10 Prob. Chi-Square(1)
0.0000
0.0000
1.0000
C
WGT^2
R-squared
2.45E-16
3.14E-08
5.44E-17
3.00E-19
4.498128
1.05E+11
0.0001
0.0000
1.00E-06
5.68E-06
2.75E-30
1.800809
1.000000 Mean dependent var
1.000000 S.D. dependent var
3.03E-16 Sum squared resid
1.09E+22 Durbin-Watson stat
0.000000
Adjusted R-squared
S.E. of regression
F-statistic
Prob(F-statistic)
nR23.01E1020.0537.81473,所以修正后的模型通过WHITE检验得到无异方差。
此时模型为:
Y849.1712-48.90755x^10.086467x21.185499x3
171.2264
8.460355
0.004839
0.028887
R20.999925
R20.999917
DW1.364803
SE1.135960
F0.00
n33
5 REVIEWS自相关检验及克服
5.1 自相关检验
5.1.1 DW检验法
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 17:28
Sample: 1978 2009
Included observations: 32
Variable
C
CSH^2
ZFZC
JMKZPSR
R-squared
Coefficient
459.4286
-1.558879
0.096554
1.265428
Std. Error
200.7984
0.460444
0.012496
0.090506
t-Statistic
2.288009
-3.385601
7.726581
13.98170
Prob.
0.0299
0.0021
0.0000
0.0000
6325.906
7066.021
14.07039
14.25360
0.998784 Mean dependent var
0.998653 S.D. dependent var
259.3089 Akaike info criterion
1882750. Schwarz criterion
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
-221.1262 Hannan-Quinn criter.
7663.496 Durbin-Watson stat
0.000000
14.13112
1.020692
DW1.020692 dl
说明在滞后一期时 该模型存在一阶自相关
5.1.2 LM检验法
Breusch-Godfrey Serial Correlation LM Test:
F-statistic
11.63691 Prob. F(1,27)
0.0021
0.0019
Prob.
0.3615
0.4776
0.1990
0.8403
0.0021
-4.19E-13
246.4424
13.77451
14.00354
13.85043
1.197067
Obs*R-squared
Test Equation:
Dependent Variable: RESID
Method: Least Squares
9.637960 Prob. Chi-Square(1)
Coefficient
-164.8782
0.288769
-0.015185
0.015708
0.772596
Std. Error
177.6396
0.401008
0.011532
0.077184
0.226482
t-Statistic
-0.928161
0.720107
-1.316774
0.203514
3.411291
Date: 06/07/12 Time: 18:03
Sample: 1978 2009
Included observations: 32
Presample missing value lagged residuals set to zero.
Variable
C
CSH^2
ZFZC
JMKZPSR
RESID(-1)
R-squared
0.301186 Mean dependent var
0.197658 S.D. dependent var
220.7472 Akaike info criterion
1315692. Schwarz criterion
-215.3922 Hannan-Quinn criter.
2.909226 Durbin-Watson stat
0.040137
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
nR29.6379600.0539.637960 LM检验也说明该模型在滞后一期时存在一阶自相关。
5.2 广义差分法克服自相关
ˆDW/20.510346
滞后一期时,
Yx101(x11)2x213x31
两边同时乘以 并将原模型与所得模型相减
得到差方后模型:
ˆ*389.849323.95x*0.04233x*0.9083x*
YX123
6 REVIEWS多重共线检验及克服
6.1多重共线检验
GDPP
CSH^2
ZFZC
JMKZPSR
GDPP
1
0.9661
18101
73518
1
08908
06614
0.986401731220.921508556861
96026
0.996187219120.976948210580.972093851591
CSH^2
47061
ZFZC
18101
08908
JMKZPSR
73518
06614
0.9726
0.96.986401731220.996187219120.921508556860.97694821058
6.1.1
去掉CSH2后 对模型R2重新进行计算
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 19:02
Sample: 1978 2009
Included observations: 32
Variable
C
ZFZC
JMKZPSR
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
Coefficient
-167.6252
0.120358
0.992477
Std. Error
90.48260
0.012051
0.047977
t-Statistic
-1.852568
9.987319
20.68630
Prob.
0.0741
0.0000
0.0000
6325.906
7066.021
14.35103
14.48844
14.39657
0.869511
0.998286 Mean dependent var
0.998167 S.D. dependent var
302.4890 Akaike info criterion
2653487. Schwarz criterion
-226.6164 Hannan-Quinn criter.
8443.399 Durbin-Watson stat
0.000000
此时R20.9982860.999337 所以CSH2不应该被剔除
6.1.2
去掉ZFZC后 对模型R重新进行计算
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 19:05
Sample: 1978 2009
Included observations: 32
Variable
C
CSH^2
JMKZPSR
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Prob(F-statistic)
Coefficient
995.1454
-3.560546
1.871291
Std. Error
327.7126
0.661954
0.078598
t-Statistic
3.036641
-5.378842
23.80846
Prob.
0.0050
0.0000
0.0000
6325.906
7066.021
15.14960
15.28702
15.19515
0.256818
2
0.996190 Mean dependent var
0.995927 S.D. dependent var
450.9395 Akaike info criterion
5897047. Schwarz criterion
-239.3937 Hannan-Quinn criter.
3791.291 Durbin-Watson stat
0.000000
此时R20.9961900.999337 所以ZFZC不应该被剔除
6.1.3
去掉JMKZPSR后 对模型R重新进行计算
Dependent Variable: GDPP
Method: Least Squares
Date: 06/07/12 Time: 19:11
Sample: 1978 2009
Included observations: 32
Variable
C
CSH^2
ZFZC
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
F-statistic
Coefficient
-1517.897
4.175785
0.247928
Std. Error
395.7188
0.580862
0.017324
t-Statistic
-3.835797
7.188952
14.31145
Prob.
0.0006
0.0000
0.0000
6325.906
7066.021
16.08504
16.22245
16.13059
0.469288
2
0.990291 Mean dependent var
0.989621 S.D. dependent var
719.8556 Akaike info criterion
15027571 Schwarz criterion
-254.3606 Hannan-Quinn criter.
1478.950 Durbin-Watson stat
Prob(F-statistic)
0.000000
此时R20.9902910.999337 所以JMKZPSR不应该被剔除
结果表明,虽然模型存在多重共线,但是并不影响本模型的分析效果,所以不必要进行处理。
7
结论
从对于1979—2009年的数据的计量分析中,我们发现了以下结论:
(1)城镇居民消费水平与人均GDP显著相关,但没有不显著影响人均GDP,不能构成影响人均GDP的自变量。故我们踢出了该自变量,初步估计是由于当前中国居民收入的不均衡,抑制了他更进一步发挥对经济增长的拉动作用。做出仅含三个自变量的回归模型。
(2)城镇居民家庭人均可支配收入、城市化率及城市政府支出对GDP的具有较大的影响,随着这三个自变量的增加,人均GDP显著增加,构成影响人均GDP的关键影响因素。
(3)为了GDP的更快更健康的增长,应加大城镇居民家庭人均可支配收入、城市化率及城市政府支出,另外要均衡居民收入,减小贫富差距。
版权声明:本文标题:计量经济学实验报告 (2) 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1703329810h447170.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论