admin 管理员组

文章数量: 887021


2023年12月25日发(作者:c语言求最大公约数原理)

Advances in Clinical Medicine 临床医学进展, 2021, 11(1), 143-149

Published Online January 2021 in Hans. /journal/acm

/10.12677/acm.2021.111021

骨质疏松性骨折风险评估工具:FRAX、QFracture、Garvan的应用和比较

董玉洁,刘 冀*

青海大学,青海 西宁

收稿日期:2020年12月16日;录用日期:2021年1月5日;发布日期:2021年1月20日

摘 要

骨质疏松性骨折是骨质疏松症最严重、最主要并发症,严重影响患者远期预后的同时加重医疗负担。因此基于临床和个人特征的多种骨折风险评估工具被开发,以早期识别骨质疏松性骨折的高危人群。FRAX、QFracture、Garvan都是国外常用的骨质疏松性骨折风险评估工具。然而我国缺乏对骨折风险预测工具的应用,相关研究也较少。本文就FRAX、QFrac研究进展做一介绍,并对三种工具进行比较,帮助不同人群选择合适的骨质疏松性骨折风险评估工具,为脆性骨折的预防、减少骨折发生提供参考。

关键词

骨质疏松性骨折,FRAX,QFracture,Garvan

Tools for Assessing the Risk of Osteoporosis:

The Application and Comparison of FRAX

QFracture Garvan

Yujie Dong, Ji Liu*

Qinghai University, Xining Qinghai

Received: Dec. 16, 2020; accepted: Jan. 5, 2021; published: Jan. 20, 2021

thththAbstract

Osteoporotic fracture is the most serious and main complication of osteoporosis. Its immense suf-*通讯作者。

文章引用: 董玉洁, 刘冀. 骨质疏松性骨折风险评估工具:FRAX、QFracture、Garvan的应用和比较[J]. 临床医学进展,

2021, 11(1): 143-149. DOI: 10.12677/acm.2021.111021

董玉洁,刘冀

fering, disability and death place a huge burden on individuals and societies. A variety of fracture

risk assessment tools based on clinical and individual characteristics have therefore been devel-oped to identify populations at high risk for osteoporotic fractures. FRAX, QFracture, and Garvan

are all free online fracture risk assessment tools. There is a lack of application of fracture risk

prediction tools in China, and there are few relevant studies. This paper introduced the applica-tion and research progress of FRAX, QFracture and Garvan, and compared the three tools to help

different populations choose appropriate risk assessment tools for osteoporosis fracture, provid-ing reference for the prevention and reduce the incidence of fractures.

Keywords

Osteoporotic Fracture, FRAX, QFracture, Garvan

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

/licenses/by/4.0/

Open Access

1. 引言

骨质疏松症(Osteoporosis, OP)是以骨密度(Bone mineral density, BMD)降低、骨结构恶化、增加骨折易感性为特征的一种全身性骨骼疾病[1]。骨质疏松性骨折(Osteoporosis fracture, OF)是OP最常见和最严重的并发症之一。OF不仅使致残率升高,生活质量下降[2]。还与超额死亡率[3] [4]和经济负担的增加[5]相关。因此预测脆性骨折风险,早期识别骨折高危个体十分重要。尽管骨质疏松或骨量减少诊断金标准依靠双能X线骨密度仪(DXA)测量。但由于设备和成本问题,基层群众骨质疏松的早期筛查和预防有一定困难。国外研究者基于人群环境,多次测量后提出了评估OF风险量表,如FRAX、QFracture、Garvan

[6]。我国关于OF风险预测工具研究和应用尚处于起步阶段,本文就当前三种工具的研究和使用作一介绍,并对三种工具进行比较。

2. FRAX

2.1. FRAX简介

骨折风险预测工具(Fracture risk assessment tool, FRAX)一种基于计算机的算法,由世界卫生组织代谢性骨病合作中心开发,并于2008年首次发布,用于评估髋部、脊柱、手腕和肱骨近端等OF常见部位未来10年发生骨折概率[7]。FRAX (/FRAX)模型根据年龄、性别、体重、身高、既往骨折史、父母髋部骨折史、目前抽烟行为、肾上腺皮质激素服用、风湿性关节炎、继发性骨质疏松症、每日酒精摄取量等,评估未来10年髋部骨折概率(PHF)及主要骨质疏松性骨折概率(PMOF)。目前有66个国家的71种版本,适用于世界人口的80%以上的人群[8]。是目前使用最广泛的OF风险预测工具。

2.2. FRAX的研究进展

尽管在没有BMD的情况下,软件仍可计算HF和MOF。但可选因素股骨颈BMD是否会影响FRAX的预测结果,目前存在争议。Beaudoin等对多种OF风险评估工具进行了系统回顾和荟萃分析,发现受试者操作曲线(ROC)下面积(AUC),FRAX合并BMD (AUC: 072),而FRAX不合并BMD (AUC: 0.69),得出依据BMD的FRAX能更好的预测OF风险[9]。Karen Dombestein Elde等认为在类风湿关节炎患者的OF风险评估中,依据BMD和不依据BMD的FRAX估计结果可能有很大不同[10]。但美国国家骨质

DOI: 10.12677/acm.2021.111021

144

临床医学进展

董玉洁,刘冀

疏松基金会(NOF)并未强调依据BMD的风险评估更加准确。尽管已经加入骨小梁评分(Trabecular bone

score, TBS)、类风湿性关节炎、跌倒史等危险因素优化该工具[11] [12],但FRAX仍旧有一定的局限性。已有研究发现糖尿病患者有更高的骨折发生率[13],但FRAX中并没有将糖尿病纳入危险因素的考虑,这可能会影响FRAX在糖尿病人群中的应用。Vincenzo Carnevale等比较974名糖尿病患者和777名无糖尿病个体的FRAX评分,发现虽然糖尿病患者既往骨折数较多,但糖尿病组平均FRAX评分却低于对照组[14]。这一结果提示尽管FRAX具有潜在效用,但对于糖尿病患者FRAX风险评估结果是否可靠仍需进一步验证。除了糖尿病,Kanis和Middleton等研究者认为FRAX评分仍未考虑量化糖皮质激素、腰椎BMD、跌倒病史等对OF的影响[15] [16]。尽管FRAX评分有一定缺陷,但FRAX仍旧是被广泛认可的OF预测工具,值得在国内应用与探索。

3. QFracture

3.1. QFracture简介

QFracture是根据英国全科医生研究数据库中200万名年龄在30岁到85岁之间的人群数据,使用Cox比例风险模型得出的OF风险评估工具Fracture最初2009年版本已废弃[17]。现使用最广的2012年版本(/),除了包括2009版的年龄、性别、体重指数、吸烟状况、父母髋部骨折史、心血管疾病史、酒精摄入量、类风湿关节炎、2型糖尿病、哮喘、跌倒史、慢性肝病、可能导致胃肠道吸收不良的疾病、内分泌问题(包括甲状腺功能亢进症、原发性或继发性甲状旁腺功能亢进症和库欣综合征)、皮质类固醇激素的使用、三环抗抑郁药的使用、激素替代疗法(HRT)的使用(女性)、女性的更年期症状等危险因素外。还根据美国国家健康和临床卓越研究所关于骨质疏松症风险评估的指南(NICE),增加了自定义名族血统、既往骨折史(手腕、脊柱、髋部或肩部)、三环类抗抑郁药以外的其他抗抑郁药的使用、慢性阻塞性肺疾病(COPD)、癫痫、抗惊厥药物的使用、痴呆症、帕金森病、任何癌症、系统性红斑狼疮、慢性肾脏疾病、1型糖尿病、疗养院居住[18]。

3.2. QFracture的研究进展

QFracture最大的优势在于不依赖BMD,预测未来1到10年间的任何骨质疏松性骨折风险(髋部、前臂、脊柱、肩部)和髋部骨折风险。2012版QFracture比2009版包含更多、更广泛的临床危险因素。Julia等对QFracture算法进行更新,认为2012版QFracture显示出了更好的性能[18]。Noa Dagan等人对1,054,815名50岁到90岁个体进行回顾性队列研究,发现QFracture预测髋部骨折的ROC曲线下面积为82.7%,在多个工具中位列第一[19]。QFracture包含多个工具所忽略,但是可能对BMD造成影响的因素,如:心血管疾病史、COPD、糖尿病等[20] [21] [22]。虽然QFracture在多项荟萃分析研究中都得到较高的评价。但该工具是依据英国和爱尔兰人群数据得出的,QFracture是否适用中国仍需进一步验证。Qfracture需要收集的信息复杂多样,使用时存在不便。Katrine Hass Rubin等对可用于预测女性OF 风险的工具进行系统综述,认为简单工具(如,骨质疏松症自我评估工具[OST],骨质疏松症风险评估工具[ORAI]等)比复杂工具(例如,FRAX和Qfracture等)做得更好[23]。Ming-Tuen等研究了不同OF风险评估工具预测香港高龄老人髋部骨折的准确性,ROC曲线下面积HKOS评分为:0.78,Qfracture为0.65,HKOS评分远高于Qfracture [24]。虽然Qfracture存在缺陷,但它是少数几个考虑了糖尿病对OF影响的工具,值得国内深入研究。

4. Garvan

4.1. Garvan简介

Garvan (/promotions/bone-fracture-risk/calculator/)是澳大利亚Dubbo骨质疏松症流

DOI: 10.12677/acm.2021.111021

145

临床医学进展

董玉洁,刘冀

行病学研究(DOES),以社区为基础的前瞻性队列研究开发的骨折风险预测工具[25]。主要依据性别、年龄、50岁以来的骨折次数(不包括重大创伤)、过去12个月内的跌倒次数和体重,来预测未来5年或10年内的髋部骨折和任何部位骨质疏松性骨折的绝对风险。Garvan通过了3个国家,6项研究的验证[25]-[30],是研究较多的OF预测工具之一。

4.2. Garvan的研究进展

Jonathan等人研究发现跌倒史的患者,OF风险明显增加[31]。Garvan评估50岁以来的骨折数量和前一年的跌倒数量,确实为OF风险预测提供了一个新的角度。虽然QFracture评分中也提及跌倒史,但是QFracture尚未在我国应用和验证。Holloway-Kew等人认为在预测脆性骨折方面,有BMD的Garvan比没有BMD的表现得更好[32]。Marques等对常见三个OF风险预测工具准确性进行系统评价和荟萃分析,Garvan被认为是可接受的[6]。王俊等人曾就FRAX和Garvan在评价我国中老年人群的骨折风险效果方面进行比较,并认为Garvan的准确性要高于FRAX [33]。与未评估BMD的Garvan相比,评估BMD的Garvan准确性更高。Garvan所需的危险因子容易收集和获得,且准确性是可以被接受的。但Garvan并非完美。Carolyn等预测50~60岁年轻绝经后妇女OF风险,认为Garvan不能很好预测OF,且缺乏合适阈值[34]。Louis-Charles等将慢性肾脏病个体按肌酐分为CKD 1、2、3期(排除CKD 4、5期),认为Garvan在CKD3期的OF风险辨别能力较低[35]。

5. FRAX、QFracture、Garvan的比较

5.1. 相同点

首先,三种工具均在基于人群的环境中进行了多次测试:FRAX(9个国家的26项研究)、QFracture(3项在英国的研究,1项也包括爱尔兰参与者)、Garvan (3个国家的6项研究) [6]。其次,三种工具均可通过登录相应网址,免费使用,输入相关危险因素后由计算机软件自动生成OF风险预测结果。第三,三种工具均可在没有BMD的情况下计算OF风险。第四,三种工具同时适用于男性和女性。第五,三种工具预测范围均在未来10年范围内。

5.2. 不同点

首先,三种工具包含的危险因素数量不同:FRAX (11个)、QFracture (31个)、Garvan (5个)。其次,FRAX和Garvan均可以选择是否在计算中加入BMD,而QFracture完全没有纳入BMD这一选项。第三,三种工具适用的年龄不同:FRAX (40~99岁)、QFracture (30~100岁)、Garvan (60~96岁),适用年龄最广泛的是QFracture,其次是FRAX,最后是Garvan [19]。第四,预测时间点不同:FRAX(预测未来10年OF风险)、QFracture (预测未来1到10年OF风险)、Garvan (60~96岁预测未来5年或10年OF风险)。

5.3. 优缺点对比

FRAX优点在于使用方便,应用广泛,我国《原发性骨质疏松症诊疗指南》也推荐使用FRAX预测OF风险[2]。FRAX的主要缺点在于没有考虑糖尿病对骨质的影响,多项研究均表明,FRAX低估了糖尿病患者的OF风险[14] [36]。所以,FRAX可能更适用于非糖尿病的个体。

QFracture的优点在于包含多种OF危险因子,尤其是包含了糖尿病,使得QFracture在预测患有多种慢性疾病的个体时可能更具优势。QFracture的主要缺点在于它基于英国和爱尔兰人群数据得出,虽然目前2012版考虑了人种和名族因素,但在其他国家的适用性仍待研究,除此之外,QFracture危险因子多,不如FRAX、Garvan便捷。所以,QFracture可能更适用于患有多种基础疾病的个体,尤其是糖尿病患者。

DOI: 10.12677/acm.2021.111021

146

临床医学进展

董玉洁,刘冀

Garvan的优点在于考虑了跌倒数量对OF的影响,而FRAX和QFracture只考虑了有无跌倒史。Garvan的主要缺点在于包含的危险因素较少,在准确性上不如FRAX和QFracture [6] [9] [16]。除夕之外,Garvan适用年龄在60~96岁之间,远没有FRAX和QFracture广泛。所以,Garvan可能更适用于视力减退等原因导致更易跌倒或过去一年有多次跌倒史的中老年个体。

国外有多项研究对FRAX、QFracture、Garvan进行比较:Andréa Marque等选择20篇文章进行Mata分析:QFracture (四分之三研究AUC超过了0.80),GARVAN (AUC约为0.70),FRAX (AUC介于0.61和0.79之间) [6]。Beaudoin等进行回顾性队列研究,预测髋部骨折的AUC:FRAX (81.5%),QFracture

(82.7%),Garvan (77.8%) [19]。结合国外的研究结果,总的来说,三者之间预测准确性QFracture最高,其次是FRAX,最后是Garvan。有BMD的FRAX和Garvan较没有BMD的FRAX和Garvan准确性高[9]。由于三种预测工具各有不足,针对不同人群选择不同的工具,也将获得理想的预测结果。

6. 总结

世界人口老龄化已不容忽视,OF发生率也逐年增加,不仅严重影响了患者生活质量,也带来了巨大经济负担。因此基于临床和个人特征的多种风险评估工具被开发,用于识别OF的高危人群。这些评估工具有需要借助影像学的,如:骨小梁评分(TBS)、定量CT (QCT)等;也有无需借助影像学的,如:FRAX、QFracture、Garvan等。在医疗条件不足和预防观念缺乏的农村、乡镇地区更加需要无需影像学的评估工具去早期发现OF高危患者。FRAX、Garvan和QFracture是目前研究最多的无需借助影像学的评估工具。所以本文对这三种工具的应用及研究进展做一介绍,并对三种工具进行比较。帮助不同人群选择合适的骨质疏松性骨折风险评估工具,为脆性骨折的预防、减少骨折发生提供参考。

参考文献

[1] Kendler, D.L., Bauer, D.C., Davison, K.S., et al. (2016) Vertebral Fractures: Clinical Importance and Management.

The American Journal of Medicine, 129, 221.e1-221.e10.

/10.1016/.2015.09.020

[2] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017) [J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(5): 413-444.

[3] Ioannidis, G., Papaioannou, A., Hopman, W.M., et al. (2009) Relation between Fractures and Mortality: Results from

the Canadian Multicentre Osteoporosis Study. CMAJ: Canadian Medical Association Journal, 181, 265-271.

/10.1503/cmaj.081720

[4] Haentjens, P., et al. (2010) Meta-Analysis: Excess Mortality after Hip Fracture among Older Women and Men. Annals

of Internal Medicine, 152, 380-390.

/10.7326/0003-4819-152-6-201003160-00008

[5] Von Keyserlingk, C., et al. (2016) The Current Economic Burden of Illness of Osteoporosis in Canada. Osteoporosis

International, 27, 3023-3032.

/10.1007/s00198-016-3631-6

[6] Marques, A., Ferreira, R.J.O., Santos, E., et al. (2015) The Accuracy of Osteoporotic Fracture Risk Prediction Tools: A

Systematic Review and Meta-Analysis. Annals of the Rheumatic Diseases, 74, 1958-1967.

/10.1136/annrheumdis-2015-207907

[7] Kanis, J.A., Johnell, O., Oden, A., Johansson, H. and McCloskey, E. (2008) FRAX and the Assessment of Fracture

Probability in Men and Women from the UK. Osteoporosis International, 19, 385-397.

/10.1007/s00198-007-0543-5

[8] Kanis, J.A., Johansson, H., Oden, A. and Cooper, C. (2014) Worldwide Uptake of FRAX. Archives of Osteoporosis, 9,

Article No. 166.

/10.1007/s11657-013-0166-8

[9] Beaudoin, C., Moore, L., Gagné, M., Bessette, L., Ste-Marie, L.G., Brown, J.P. and Jean, S. (2019) Performance of

Predictive Tools to Identify Individuals at Risk of Non-Traumatic Fracture: A Systematic Review, Meta-Analysis, and

Meta-Regression. Osteoporosis International, 30, 721-740.

/10.1007/s00198-019-04919-6

[10] Elde, K.D. and Madsen, O.R. (2018) FRAX 10-yr Fracture Risk in Rheumatoid Arthritis—Assessments with and

without Bone Mineral Density May Lead to Very Different Results in the Individual Patient. Journal of Clinical Den-sitometry, 22, 31-38.

/10.1016/.2018.10.007

DOI: 10.12677/acm.2021.111021

147

临床医学进展

董玉洁,刘冀

[11] McCloskey, E.V., et al. (2016) A Meta-Analysis of Trabecular Bone Score in Fracture Risk Prediction and Its Rela-tionship to FRAX. Journal of Bone and Mineral Research, 31, 940-948.

/10.1002/jbmr.2734

[12] Masud, T., Binkley, N., Boonen, S., et al. (2011) Official Positions for FRAX® Clinical Regarding Falls and Frailty:

Can Falls and Frailty Be Used in FRAX®? From Joint Official Positions Development Conference of the International

Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. Journal of Clinical Densi-tometry, 14, 194-204.

/10.1016/.2011.05.010

[13] Petit, M.A., Paudel, M.L., Taylor, B.C., et al. (2010) Bone Mass and Strength in Older Men with Type 2 Diabetes: The

Osteoporotic Fractures in Men Study. Journal of Bone and Mineral Research, 25, 285-291.

/10.1359/jbmr.090725

[14] Carnevale, V., Morano, S., Fontana, A., et al. (2014) Assessment of Fracture Risk by the FRAX Algorithm in Men and

Women with and without Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes/Metabolism Research and Re-views, 30, 313-322.

/10.1002/dmrr.2497

[15] Kanis, J.A., Hans, D., Cooper, C., et al. (2011) Interpretation and Use of FRAX in Clinical Practice. Osteoporosis In-ternational, 22, 2395-2411.

/10.1007/s00198-011-1713-z

[16] Middleton, R.G., Shabani, F., Uzoigwe, C.E., et al. (2012) FRAX and the Assessment of the Risk of Developing a Fra-gility Fracture. The Journal of Bone and Joint Surgery. British Volume, 94, 1313-1320.

/10.1302/0301-620X.94B10.28889

[17] Hippisley-Cox, J. and Coupland, C. (2009) Predicting Risk of Osteoporotic Fracture in Men and Women in England

and Wales: Prospective Derivation and Validation of QFractureScores. BMJ (Clinical Research ed.), 339, b4229.

/10.1136/bmj.b4229

[18] Hippisley-Cox, J. and Coupland, C. (2012) Derivation and Validation of Updated QFracture Algorithm to Predict Risk

of Osteoporotic Fracture in Primary Care in the United Kingdom: Prospective Open Cohort Study. BMJ (Clinical Re-search ed.), 344, e3427.

/10.1136/bmj.e3427

[19] Dagan, N., et al. (2017) External Validation and Comparison of Three Prediction Tools for Risk of Osteoporotic Frac-tures Using Data from Population Based Electronic Health Records: Retrospective Cohort Study. BMJ (Clinical Re-search ed.), 356, i6755.

/10.1136/bmj.i6755

[20] Ahmadi, N., Mao, S.S., Hajsadeghi, F., et al. (2018) The Relation of Low Levels of Bone Mineral Density with Coro-nary Artery Calcium and Mortality. Osteoporosis International, 29, 1609-1616.

/10.1007/s00198-018-4524-7

[21] Munhoz da Rocha Lemos Costa, T., Costa, F.M., Hoffman Jonasson, T., et al. (2018) Bone Mineral Density and Ver-tebral Fractures and Their Relationship with Pulmonary Dysfunction in Patients with Chronic Obstructive Pulmonary

Disease. Osteoporosis International, 29, 2537-2543.

/10.1007/s00198-018-4643-1

[22] Mohsin, S., Kaimala, S., Sunny, J.J., et al. (2019) Type 2 Diabetes Mellitus Increases the Risk to Hip Fracture in

Postmenopausal Osteoporosis by Deteriorating the Trabecular Bone Microarchitecture and Bone Mass. Journal of Di-abetes Research, 2019, Article ID: 3876957.

/10.1155/2019/3876957

[23] Rubin, K.H., Friis-Holmberg, T., Hermann, A.P., Abrahamsen, B. and Brixen, K. (2013) Risk Assessment Tools to

Identify Women with Increased Risk of Osteoporotic Fracture: Complexity or Simplicity? A Systematic Review.

Journal of Bone and Mineral Research, 28, 1701-1717.

/10.1002/jbmr.1956

[24] Lam, M.-T., Sing, C.-W., et al. (2020) Development and Validation of a Risk Score to Predict the First Hip Fracture in

the Oldest Old: A Retrospective Cohort Study. The Journals of Gerontology. Series A, Biological Sciences and Medi-cal Sciences, 75, 980-986.

/10.1093/gerona/glz178

[25] Nguyen, N.D., Frost, S.A., Center, J.R., Eisman, J.A. and Nguyen, T.V. (2008) Development of Prognostic Nomo-grams for Individualizing 5-Year and 10-Year Fracture Risks. Osteoporosis International, 19, 1431-1444.

/10.1007/s00198-008-0588-0

[26] Nguyen, N.D., Frost, S.A., Center, J.R., Eisman, J.A. and Nguyen, T.V. (2007) Development of a Nomogram for Indi-vidualizing Hip Fracture Risk in Men and Women. Osteoporosis International, 18, 1109-1117.

/10.1007/s00198-007-0362-8

[27] Bolland, M.J., et al. (2011) Evaluation of the FRAX and Garvan Fracture Risk Calculators in Older Women. Journal of

Bone and Mineral Research, 26, 420-427.

/10.1002/jbmr.215

[28] Sambrook, P.N., et al. (2011) Predicting Fractures in an International Cohort Using Risk Factor Algorithms without

BMD. Journal of Bone and Mineral Research, 26, 2770-2777.

/10.1002/jbmr.503

[29] Sandhu, S.K., Nguyen, N.D., Center, J.R., Pocock, N.A., Eisman, J.A. and Nguyen, T.V. (2010) Prognosis of Fracture:

Evaluation of Predictive Accuracy of the FRAX Algorithm and Garvan Nomogram. Osteoporosis International, 21,

863-871.

/10.1007/s00198-009-1026-7

[30] Langsetmo, L., et al. (2011) Independent External Validation of Nomograms for Predicting Risk of Low-Trauma

DOI: 10.12677/acm.2021.111021

148

临床医学进展

董玉洁,刘冀

Fracture and Hip Fracture. CMAJ: Canadian Medical Association Journal, 183, E107-E114.

/10.1503/cmaj.100458

[31] Adachi, J.D., Berger, C., Barron, R., et al. (2019) Predictors of Imminent Non-Vertebral Fracture in Elderly Women

with Osteoporosis, Low Bone Mass, or a History of Fracture, Based on Data from the Population-Based Canadian

Multicentre Osteoporosis Study (CaMos). Archives of Osteoporosis, 14, Article No. 53.

/10.1007/s11657-019-0598-x

[32] Holloway-Kew, K.L., et al. (2019) How Well Do the FRAX (Australia) and Garvan Calculators Predict Incident Frac-tures? Data from the Geelong Osteoporosis Study. Osteoporosis International, 30, 2129-2139.

/10.1007/s00198-019-05088-2

[33] 王俊, 王雪君, 方贞. FRAX和Garvan法评估中老年人群骨折风险效果比较[J]. 预防医学, 2017, 29(3): 282-285.

[34] Crandall, C.J., et al. (2019) Predicting Fracture Risk in Younger Postmenopausal Women: Comparison of the Garvan

and FRAX Risk Calculators in the Women’s Health Initiative Study. Journal of General Internal Medicine, 34,

235-242.

/10.1007/s11606-018-4696-z

[35] Desbiens, L.-C., Sidibe, A., Beaudoin, C., et al. (2020) Comparison of Fracture Prediction Tools in Individuals without

and with Early Chronic Kidney Disease: A Population-Based Analysis of CARTaGENE. Journal of Bone and Mineral

Research, 35, 1048-1057.

/10.1002/jbmr.3977

[36] Giangregorio, L.M., Leslie, W.D., Lix, L.M., et al. (2012) FRAX Underestimates Fracture Risk in Patients with Di-abetes. Journal of Bone and Mineral Research, 27, 301-308.

/10.1002/jbmr.556

DOI: 10.12677/acm.2021.111021

149

临床医学进展


本文标签: 风险 工具 骨折