admin 管理员组文章数量: 887016
如果在python内调用pytorch有可能显存和GPU占用不会被自动释放,此时需要加入如下代码
torch.cuda.empty_cache()
我们来看一下官方文档的说明
Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in nvidia-smi.
Note
empty_cache() doesn't increase the amount of GPU memory available for PyTorch. See Memory management for more details about GPU memory management.
此外还可以使用
memory_allocated()和max_memory_allocated()
观察显存占用,并使用
memory_cached()和 max_memory_cached()
观察由缓存分配器管理的内存。
以上这篇Pytorch释放显存占用方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
本文标题: Pytorch释放显存占用方式
本文地址: http://www.cppcns/jiaoben/python/298283.html
版权声明:本文标题:释放pytorch占用的gpu显存_Pytorch释放显存占用方式 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1727214975h1082914.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论