admin 管理员组文章数量: 887021
2023年12月25日发(作者:php登录界面连接数据库)
正割函数
目录[隐藏]
【定义】
【性质】
【图像】
[编辑本段]
【定义】
在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.
[编辑本段]
【性质】
y=secx的性质:
(1)定义域,{x|x≠π/2+kπ,k∈Z}
(2)值域,|secx|≥1.即secx≥1或secx≤-1;
(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;
粗线是正割函数,细线是余割函数
(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.
(5)正割与余弦互为倒数;余割与正弦互为倒数;
(6)正割函数无限趋于直线x=π/2+Kπ;
(7) 正割函数是无界函数;
(8)正割函数的导数:(secx)′=secx×tarx;
(9)正割函数的不定积分:∫secxdx=ln∣secx+tanx∣+C
正切函数
目录[隐藏]
正切函数的概述
正切函数的定义
正切函数的性质
[编辑本段]
正切函数的概述
正切函数是三角函数的一种
[编辑本段]
正切函数的定义
对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正切值tanx与它对应,按照这个对应法则建立的函数称为正切函数。
形式是f(x)=tanx
正切函数是区别于正弦函数的又一三角函数,
它与正弦函数的最大区别是定义域的不连续性.
[编辑本段]
正切函数的性质
1、定义域:{x|x≠(π/2)+kπ,k∈Z}
2、值域:实数集R
3、奇偶性:奇函数
4、单调性:在区间(-π/2+kπ,π/2+kπ),k∈Z上都是增函数
5、周期性:最小正周期π(可用π/|ω|来求)
6、最值:无最大值与最小值
7、零点:kπ, k∈Z
8、对称性:
轴对称:无对称轴
中心对称:关于点(kπ/2,0)对称 k∈Z
9、图像(如图所示)
实际上,正切曲线除了原点是它的对称中心以外,所有零点都是它的对称中心.
反三角函数
百科名片
是一种数学术语。反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
目录[隐藏]
英文名称:
数学术语
公式
[编辑本段]
英文名称:
Inverse trigonometric functions
[编辑本段]
数学术语
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2 反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x). (1)正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。arcsin x表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。 (2)余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。arccos x表示一个余弦值为x的角,该角的范围在[0,π]区间内。 (3)正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。arctan x表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。 反三角函数主要是三个: y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条; y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条; y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条; sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx 证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得 其他几个用类似方法可得 cos(arccos x)=x, arccos(-x)=π-arccos x tan(arctan x)=x, arctan(-x)=-arctanx [编辑本段] 公式 反三角函数其他公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈[—π/2,π/2]时,有arcsin(sinx)=x 当x∈[0,π],arccos(cosx)=x x∈(—π/2,π/2),arctan(tanx)=x x∈(0,π),arccot(cotx)=x x〉0,arctanx=π/2-arctan1/x,arccotx类似 若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)
版权声明:本文标题:正割、正切、反三角函数 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/free/1703447623h451824.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论