admin 管理员组

文章数量: 887021


2024年1月25日发(作者:walk用中文怎么说)

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。【计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0】

中文名

二进制

外文名

binary system

目录

1简介

2运算

▪ 加法

▪ 乘法

▪ 减法

▪ 除法

▪ 拈加法

3进制转换

▪ 与十进制

▪ 与八进制

▪ 与十六进制

▪ 与十进制的区别

4莱布尼茨

▪ 简述

▪ 与中国易经联系

5特点

▪ 优点

▪ 缺点

6采用原因

7学科关系

8处理数据

9换算

1简介编辑

20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由„0‟.„1‟符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

二进制数据的表示法

二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,逢2进1,其权的大小顺序为2²、2¹、2º、

。对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为:

二进制数据一般可写为:

【例1102】将二进制数据111.01写成加权系数的形式。

解:

二进制和十六进制,八进制一样,都以二的幂来进位的。

2运算编辑

二进制数据的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。

加法

有四种情况: 0+0=0

0+1=1

1+0=1

1+1=10

0 进位为1

【例1103】求 1011(2)+11(2) 的和

解:

1011+11

[1]乘法

有四种情况: 0×0=0

1×0=0

0×1=0

1×1=1

减法

0-0=0,1-0=1,1-1=0,0-1=1。

除法

0÷1=0,1÷1=1。

拈加法

拈加法二进制加减乘除外的一种特殊算法。

拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用

计算机中的十进制小数转换二进制

计算机中的十进制小数用二进制通常是用乘二取整法来获得的。

比如0.65换算成二进制就是:

0.65 × 2 = 1.3 取1,留下0.3继续乘二取整

0.3 × 2 = 0.6 取0, 留下0.6继续乘二取整

0.6 × 2 = 1.2 取1,留下0.2继续乘二取整

0.2 × 2 = 0.4 取0, 留下0.4继续乘二取整

0.4 × 2 = 0.8 取0, 留下0.8继续乘二取整

0.8 × 2 = 1.6 取1, 留下0.6继续乘二取整

0.6 × 2 = 1.2 取1,留下0.2继续乘二取整

.......

一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:0.1010011。

还值得一提的是,在计算机中,除了十进制是有符号的外,其他如二进制、八进制、16进制都是无符号的。

在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。

1+1=10,10+1=11,11+1=100,100+1=101,

101+1=110,110+1=111,111+1=1000,……,

可见二进制的10表示二,100表示四,1000表示八,10000表示十六,……。

二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。

所谓二进制,也就是计算机运算时用的一种算法。二进制只由一和零组成。

比方说吧,你上一年级时一定听说过“进位筒”(“数位筒”)吧!十进制是个位上满十根小棒就捆成一捆,放进十位筒,十位筒满十捆就捆成一大捆,放进百位筒……

二进制也是一样的道理,个位筒上满2根就向十位进一,十位上满两根就向百位进一,百位上满两根…… 二进制是世界上第一台计算机上用的算法,最古老的计算机里有一个个灯泡,当运算的时候,比如要表达“一”,第一个灯泡会亮起来。要表达“二”,则第一个灯泡熄灭,第二个灯泡就会亮起来。

二进制就是等于2时就要进位。

0=00000000

1=00000001

2=00000010

3=00000011

4=00000100

5=00000101

6=00000110

7=00000111

8=00001000

9=00001001

10=00001010

……

即是逢二进一,二进制广泛用于最基础的运算方式,计算机的运行计算基础就是基于二进制来运行。只是用二进制执行运算,用其他进制表现出来。

其实把二进制三位一组分开就是八进制, 四位一组就是十六进制

3进制转换编辑

十进制数转换为二进制数、八进制数、十六进制数的方法:

二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法

与十进制

(1)二进制转十进制

方法:“按权展开求和”

【例】:

规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十

分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

注意:不是任何一个十进制小数都能转换成有限位的二进制数。

(2)十进制转二进制

· 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)

【例】:

89†2 ……1

44†2 ……0

22†2 ……0

11†2 ……1

5†2 ……1

2†2 ……0

1

· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)

【例】: (0.625)10= (0.101)2

0.625X2=1.50 ……1

0.25 X2=0.50 ……0

0.50 X2=1.00 ……1

十进制1至100的二进制表示:

0=0

1=1

2=10

3=11

4=100

5=101

6=110

7=111

8=1000

9=1001

10=1010

11=1011

12=1100

13=1101

14=1110

15=1111

16=10000

17=10001

18=10010

19=10011

20=10100

21=10101

22=10110

23=10111

24=11000

25=11001

26=11010

27=11011

28=11100

29=11101

30=11110

31=11111

32=100000

33=100001

34=100010

35=100011

36=100100

37=100101

38=100110

39=100111

40=101000

41=101001

42=101010

43=101011

44=101100

45=101101

46=101110

47=101111

48=110000

49=110001

50=110010

51=110011

52=110100

53=110101

54=110110

55=110111

56=111000

57=111001

58=111010

59=111011

60=111100

61=111101

62=111110

63=111111

64=1000000

65=1000001

66=1000010

67=1000011

68=1000100

69=1000101

70=1000110

71=1000111

72=1001000

73=1001001

74=1001010

75=1001011

76=1001100

77=1001101

78=1001110

79=1001111

80=1010000

81=1010001

82=1010010

83=1010011

84=1010100

85=1010101

86=1010110

87=1010111

88=1011000

89=1011001

90=1011010

91=1011011

92=1011100

93=1011101

94=1011110

95=1011111

96=1100000

97=1100001

98=1100010

99=1100011

100=1100100

101=1100101

102=1100110

103=1100111

104=1101000

105=1101001

106=1101010

107=1101011

108=1101100

109=1101101

110=1101110

111=1101111

112=1110000

113=1110001

114=1110010

115=1110011

116=1110100

117=1110101

118=1110110

119=1110111

120=1111000

121=1111001

122=1111010

123=1111011

124=1111100

125=1111101

126=1111110

127=1111111

128=10000000

与八进制

二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。

八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。

八进制数字与二进制数字对应关系如下:

000 -> 0 | 100 -> 4

001 -> 1 | 101 -> 5

010 -> 2 | 110 -> 6

011 -> 3 | 111 -> 7

【例】:将八进制的37.416转换成二进制数:

3 7 . 4 1 6

011 111 .100 001 110

即:(37.416)8 =(11111.10000111)2

【例】:将二进制的10110.0011 转换成八进制:

0 1 0 1 1 0 . 0 0 1 1 0 0

2 6 . 1 4

即:(10110.0011)2 = (26.14)8


本文标签: 二进制 运算 计算机 数据 表示