admin 管理员组文章数量: 887021
2024年2月29日发(作者:demonstrate固定搭配)
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tanAtanBtan(A+B) =
1-tanAtanBtanAtanBtan(A-B) =
1tanAtanBcotAcotB-1cot(A+B) =
cotBcotAcotAcotB1cot(A-B) =
cotBcotA倍角公式
2tanAtan2A =
21tanASin2A=2SinA•CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan(+a)·tan(-a)
33半角公式
sin(A1cosA)=
22A1cosA)=
22A1cosA)=
21cosAA1cosA)=
21cosAcos(tan(cot(tan(A1cosAsinA)==
sinA1cosA2和差化积
ababsina+sinb=2sincos
22ababsina-sinb=2cossin
22
ababcos
22ababcosa-cosb = -2sinsin
22sin(ab)tana+tanb=
cosacosb积化和差
1sinasinb = -[cos(a+b)-cos(a-b)]
21cosacosb = [cos(a+b)+cos(a-b)]
21sinacosb = [sin(a+b)+sin(a-b)]
21cosasinb = [sin(a+b)-sin(a-b)]
2诱导公式
sin(-a) = -sina
cos(-a) = cosa
cosa+cosb = 2cos-a) = cosa
2cos(-a) = sina
2sin(+a) = cosa
2cos(+a) = -sina
2sin(π-a) = sina
cos(π-a) = -cosa
sin(π+a) = -sina
cos(π+a) = -cosa
sinatgA=tanA =
cosa万能公式
a2tan2 sina=a1(tan)22a1(tan)22 cosa=a1(tan)22sin(
a2 tana=a1(tan)22其它公式
2tana•sina+b•cosa=(a2b2)×sin(a+c) [其中tanc=a•sin(a)-b•cos(a) =
1+sin(a) =(sinb]
aa]
b(a2b2)×cos(a-c) [其中tan(c)=aa+cos)2
22aa1-sin(a) = (sin-cos)2
22其他非重点三角函数
1csc(a) =
sina1sec(a) =
cosa双曲函数
ea-e-asinh(a)=
2eae-acosh(a)=
2tg h(a)=sinh(a)
cosh(a)公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
3±α及±α与α的三角函数值之间的关系:
22sin(+α)= cosα
2cos(+α)= -sinα
2tan(+α)= -cotα
2cot(+α)= -tanα
2sin(-α)= cosα
2cos(-α)= sinα
2tan(-α)= cotα
2cot(-α)= tanα
23sin(+α)= -cosα
23cos(+α)= sinα
23tan(+α)= -cotα
23cot(+α)= -tanα
23sin(-α)= -cosα
2
3-α)= -sinα
23tan(-α)= cotα
23cot(-α)= tanα
2(以上k∈Z)
cos(正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
正切定理:
[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A•sin(ωt+θ)+ B•sin(ωt+φ) =A2B22ABcos()×sin
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
tarcsin[(AsinBsin)AB2ABcos()22
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
正加正 正在前
正减正 余在前
余加余 都是余
余减余 没有余还负
正余正加 余正正减
余余余加 正正余减还负
.
3.三角形中的一些结论:(不要求记忆)
(1)anA+tanB+tanC=tanA·tanB·tanC
(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1
(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC
(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1
...........................
已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ
解:sinα=m sin(α+2β)
sin(a+β-β)=msin(a+β+β)
sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ
sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)
tan(α+β)=(1+m)/(1-m)tanβ
版权声明:本文标题:数学常用三角函数公式全集 内容由网友自发贡献,该文观点仅代表作者本人, 转载请联系作者并注明出处:http://www.freenas.com.cn/jishu/1709184423h539524.html, 本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。
发表评论