admin 管理员组

文章数量: 887021


2024年2月28日发(作者:excel没有evaluate函数)

目录

反应堆:Nuclear Reactor ............................................................ 2

堆芯:core .................................................................................... 3

核燃料:fuel ................................................................................. 3

燃料元件:fuel element ............................................................... 6

燃料组件:fuel assembly ............................................................. 6

乏燃:spent fuel .......................................................................... 6

主管道:main pipe ....................................................................... 6

主屏蔽:main shield .................................................................... 6

反射屏蔽:reflective enclosure ................................................... 7

压力容器:pressure vessel ......................................................... 7

冷却剂:coolant ........................................................................... 7

控制棒:control rod ..................................................................... 7

控制棒组件:control rod assembly ............................................. 8

非能动安全系统:passive safety system .................................... 8

稳压器 :pressurizer ................................................................... 8

生物屏蔽:Biological shielding ................................................... 8

人孔:manhole ............................................................................. 8

反应堆:Nuclear Reactor

反应堆,又称为原子能反应堆或反应堆,是能维持可控自持链式核裂变反应,以实现核能利用的装置。核反应堆通过合理布置核燃料,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。按照冷却方式分类可分为以下几类:

气冷快堆

气冷快堆(gas-cooled fast reactor,GFR)系统是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。参考反应堆是288兆瓦的氦冷系统,出口温度为850℃。

液态金属冷却快堆

铅合金液态金属冷却快堆(lead-cooled fast reactor,LFR)系统是快中子谱铅(铅/铋共晶)液态金属冷却堆,采用闭式燃料循环,以实现可转换铀的有效转化,并控制锕系元素。燃料是含有可转换铀和超铀元素的金属或氮化物。

LFR系统的特点是可在一系列电厂额定功率中进行选择,例如LFR系统可以是一个1200兆瓦的大型整体电厂,也可以选择额定功率在300~400兆瓦的模块系统与一个换料间隔很长(15~20年)的50~100兆瓦的组合。LFR是一个小型的工厂制造的交钥匙电厂,可满足市场上对小电网发电的需求。

液态钠冷却快堆(sodium-cooled fast reactor,SFR)系统是快中子谱钠冷堆,它采用可有效控制锕系元素及可转换铀的转化的闭式燃料循环。SFR系统主要用于管理高放射性废弃物,尤其在管理钚和其他锕系元素方面。该系统有两个主要方案:中等规模核电站,即功率为150~500兆瓦,燃料用铀-钚-次锕系元素-锆合金;中到大规模核电站,即功率为500~1 500兆瓦,使用铀-钚氧化物燃料。

该系统由于具有热响应时间长、冷却剂沸腾的裕度大、一回路系统在接近大气压下运行,并且该回路的放射性钠与电厂的水和蒸汽之间有中间钠系统等特点,因此安全性能好。

熔盐堆系

熔盐反应堆(molten salt reactor,MSR)系统是超热中子谱堆,燃料是钠、锆和氟化铀的循环液体混合物。熔盐燃料流过堆芯石墨通道,产生超热中子谱。MSR系统的液体燃料不需要制造燃料元件,并允许添加钚这样的锕系元素。锕系元素和大多数裂变产物在液态冷却剂中会形成氟化物。熔融的氟盐具有很好的传热特性,可降低对压力容器和管道的压力。参考电站的功率水平为1000兆瓦,冷却剂出口温度700~800℃,热效率高。

冷堆系统

超高温气冷堆(very high temperature reactor,VHTR)系统是一次通过式铀燃料循环的石墨慢化氦冷堆。该反应堆堆芯可以是棱柱块状堆芯(如日本的高温工程试验反应器HTTR),也可以是球床堆芯(如中国的高温气冷试验堆HTR-10)。

VHTR(超高温气冷堆)系统提供热量,堆芯出口温度为1 000℃,可为石油化工或其他行业生产氢或工艺热。该系统中也可加入发电设备,以满足热电联供的需要。此外,该系统在采用铀/钚燃料循环,使废物量最小化方面具有灵活性。参考堆采用600兆瓦堆芯。

超临界水冷堆

超临界水冷堆(super-critical water-cooled reactor,SCWR)系统是高温高压水冷堆,在水的热力学临界点(374℃,22.1兆帕)以上运行。超临界水冷却剂能使热效率提高到轻水堆的约1.3倍。该系统的特点是,冷却剂在反应堆中不改变状态,直接与能量转换设备相连接,因此可大大简化电厂配套设备。燃料为铀氧化物。堆芯设计有两个方案,即热中子谱和快中子谱。参考系统功率为1 700兆瓦,运行压力是25兆帕,反应堆出口温度为510~550℃。

堆芯:core

核燃料组件所在区域,核反应进行的地方,高辐射,是反应堆的心脏,装在压力容器中间。它是燃料组件构成的。正如锅炉烧的煤块一样,燃料芯块是核电站“原子锅炉”燃烧的基本单元。例如常见的压水堆,其芯块是由二氧化铀烧结而成的,含有2~4%的铀-235,呈小圆柱形,直径为9.3毫米。把这种芯块装在两端密封的锆合金包壳管中,成为一根长约4米、直径约10毫米的燃料元件棒。把200多根燃料棒按正方形排列,用定位格架固定,组成燃料组件。每个堆芯一般由121个到193个组件组成。这样,一座压水堆所需燃料棒几万根,二氧化铀芯块1千多万块堆芯。此外,这种反应堆的堆芯还有控制棒和含硼的冷却水(冷却剂)。控制棒用银铟镉材料制成,外面套有不锈钢包壳,可以吸收反应堆中的中子,它的粗细与燃料棒差不多。

核燃料:fuel

可在核反应堆中通过核裂变或核聚变产生实用核能的材料。重核的裂变和轻核的聚变是获得实用铀棒核能的两种主要方式。铀233、铀235 铀238,和钚239是能发生核裂变的核燃料,又称裂变核燃料;氘和氚等能发生核聚变的核燃料,又称聚变核燃料

包含易裂变核素、在核反应堆内可以实现自持核裂变链式反应的材料。核燃料在反应堆内使用时,应满足以下的要求:

①与包壳材料相容,与冷却剂无强烈的化学作用;

②具有较高的熔点和热导率;

③辐照稳定性好;

④制造容易,再处理简单。根据不同的堆型,可以选用不同类型的核燃料:常见燃料如下表:

核燃料分类表 燃料形式

[1]形态

金属

材料

U

U-Al

适用堆型

石墨慢化堆

快堆

快堆

脉冲堆

重水堆

快堆

快堆

快堆

轻水堆、重水堆

重水堆

合金 U-Mo

U-ZrH

固体燃料

U3Si

(U,Pu)O2

陶瓷

(U,Pu)C

(U,Pu)N

UO2

金属-金属

UAl4-Al

弥散体

陶瓷-金属

陶瓷-陶瓷

水溶液

悬浊液

UO2-Al

(U,Th)O2-(热解石墨, SiC)-石墨

(UO2)SO4-H2O

U3O8-H2O

U-Bi

UF4-LiF-BeF2-ZrF4

重水堆

高温气冷堆

沸水堆

水均匀堆

熔盐堆

液体燃料

液态金属

熔盐

金属燃料

铀是普遍使用的核燃料。天然铀中只含0.7%的U235,其余为U238。天然铀的这个浓度正好能使核反应堆实现自持核裂变链式反应,因而成为最早的核燃料,功率密度,一般要用U含量大于0.7%的浓缩铀。这可以通过气体扩散法或离心法来获得。

金属铀在堆内使用的主要缺点为:有同质异晶转变;熔点低;存在尺寸不稳定性;最常见的是核裂变产物使其体积膨胀(称为肿胀);加工时形成的织构使铀棒在辐照时沿轴向伸长(称为辐照生长),虽然不伴随体积变化,但伸长量有时可达原长的4倍。此外,辐照还使金属铀的蠕变速度增加(50~ 100倍)。这些问题通过铀的合金化虽有所改善,但远不如采用UO2陶瓷燃料为佳。

钚(Pu)是人工易裂变材料,临界质量比铀小,在有水的情况下,650克的钚即可发生临界事故。钚的熔点很低(640℃),一般都以氧化物与UO2混合使用。钚与U组合可以实现快中子增殖,因而使钚成为着重研究的核燃料。

钍吸收中子后可以转换为易裂变的U,它在地壳中的储量很丰富,所能提供的能量大约相当于铀、煤和石油全部储量的总和。钍的熔点较高,直至1400℃才发生相变,且相变前后均为各向同性结构,所以辐照稳定性较好,这是它优于铀、钚之处。钍在使用中的主要限制为辐照下蠕变强度很低。一般以氧化物或碳化物的形式使用。在热中子反应堆中利用U-Th循环可得到接近于1的转换比,从而实现“近似增殖”。但这种循环比较复杂,后处理也比较困难,因此尚未获得广泛应用。

陶瓷燃料

包括铀、钚等的氧化物、碳化物和氮化物,其中UO2是最常用的陶瓷燃料。UO2的熔点很高(2865℃),高温稳定性好。辐照时UO2燃料芯块内可保留大量裂变气体,所以燃耗(指燃耗份额,即消耗的易裂变核素的量占初始装载量的百分比值)达10%也无明显的尺寸变化。它与包壳材料锆或不锈钢之间的相容性很好,与水也几乎没有化学反应,因此普遍用于轻水堆中。但是UO2的热导率较低,核燃料的密度低,限制了反应堆参数进一步提高。在这方面,碳化铀(UC)则具有明显的优越性。UC的热导率比UO2高几倍,单位体积内的含铀量也高得多。它的主要缺点是会与水发生反应,一般用于高温气冷堆。

弥散体燃料

这种材料是将核燃料弥散地分布在非裂变材料中。在实际应用中,广泛采用由陶瓷燃 料颗粒和金属基体组成的弥散体系。这样可以把陶瓷的高熔点和辐照稳定性与金属的较好的强度、塑性和热导率结合起来。细小的陶瓷燃料颗粒减轻了温差造成的热应力,连续的金属基体又大大减少了裂变产物的外泄。由裂变碎片所引起的辐照损伤基本上集中在燃料颗粒内,而基体主要是处在中子的作用下,所受损伤相对较轻,从而可达到很深的燃耗。这种燃料在研究堆中获得广泛应用。除陶瓷燃料颗粒外,由铀、铝的金属间化合物和铝合金(或铝粉)所组成的体系,效果也较好。在弥散体燃料中由于基体对中子的吸收和对燃料相的稀释,必须使用浓缩铀。

包覆颗粒燃料也是一种弥散体系。在高温气冷堆中,采用铀、钍的氧化物或碳化物作为核燃料,并把它弥散在石墨中。由于石墨基体不够致密,因而要在燃料颗粒外面包上耐高温的、坚固而气密性好的多层外壳,以防止裂变产物的外泄和燃料颗粒的膨胀。外壳是由不

同密度的热解碳和碳化硅(SiC)组成的,其总厚度应大于反冲原子的自由程,一般在100~300微米之间。整个燃料颗粒的直径为1毫米。使用包覆颗粒燃料不仅可达到很深的燃耗,而且大大提高了反应堆的工作温度,是一种很有前途的核燃料类型。

以上几种类型的核燃料都用于非均匀堆。根据设计要求,可制成带有包壳的、不同形状的燃料元件(见图1)。

流体燃料

在均匀堆中,核燃料悬浮或溶解于水、液态金属或熔盐中,从而成为流体燃料(液态燃料)。流体燃料从根本上消除了因辐照造成的尺寸不稳定性,也不会因温度梯度而产生热应力,可以达到很深的燃耗。同时,核燃料的制备和后处理也都大大简化,并且还提供了连续加料和处理的可能性。流体燃料与冷却剂或慢化剂直接接触,所以对放射性安全提出较严的要求,且腐蚀和质量迁移也往往是一个严重问题。这种核燃料尚处于实验阶段(见锕系金属)。

燃料元件:fuel element

泛指核反应堆内具有独立结构的燃料使用单元。包括从单一的圆柱状短棒到结构复杂的大组件。通常指由燃料芯体和包壳组成的燃料单元,如燃料棒、燃料板和燃料球

燃料组件:fuel assembly

几百根燃料棒按照一定间隔按15×15或17×17排列并被固定成一束,称为燃料组件。它主要由上下管座、格架、控制棒导向管和燃料棒组成

乏燃:spent fuel

用过的燃料,也称为废燃料

主管道:main pipe

特指一回路管道,即从堆芯流出的冷却剂通过该管道进入蒸汽发生器,再流回堆芯,形成循环

主屏蔽:main shield

也称为一次屏蔽体,通常由混凝土结构构成,防止堆芯的中子对人员造成辐射

反射屏蔽:reflective enclosure

堆芯压力容器外的屏蔽体,一般由耐腐蚀和辐射的金属材料构成,起到将中子发射回堆芯的作用,保证反应性的中子量

压力容器:pressure vessel

安置核反应堆并承受其巨大运行压力的密闭容器,也称反应堆压力壳。核电站所用的反应堆主要有轻水堆(压水堆及沸水堆)、重水堆、气冷堆及快堆等。由于压力容器包容了反应堆的活性区和其他必要设备,其结构形式随不同堆型而异。分为钢和预应力混凝土两类。反应堆压力容器位于反应堆厂房中心,设计时主要考虑一回路冷却剂的高压和高温,主管道断裂事故和地震等作用。由于压力容器所容纳的反应堆本体放射性极强,故在材质要求、制作、检验及在役检查等方面都比常规压力容器要严格得多。钢压力容器可用于各种类型的核反应堆。预应力混凝土压力容器已成功地用于气冷堆,并正在探索用于其他类型的核反应堆。

冷却剂:coolant

又称载热剂(heat-carrying agent)。用来冷却堆内燃料元件并将燃料裂变时所发出的热量带出堆外的物质。冷却剂可以是二氧化碳、空气和氦等气体

。也可以是水、重水和有机物液体。快堆中常用液态金属钠和钠钾合金作冷却剂。冷却剂应有良好的导热性能和小的中子吸收截面,它与结构材料应有良好的相容性。冷却剂的化学稳定性要好,能在较高的温度下工作,以获得较高的热效率,价格应该便宜,使用安全。有时冷却剂和慢化剂用同一种物质。冷却剂将堆芯热量带出堆外以供利用,本身被冷却返回堆内重新循环

控制棒:control rod

为了控制链式反应的速率在一个预定的水平上,需用吸收中子的材料做成吸收棒,称之为控制棒和安全棒。控制棒用来补偿燃料消耗和调节反应速率;安全棒用来快速停止链式反应。吸收体材料一般是硼、碳化硼、镉、银铟镉等。 冷却系统中的冷却剂:为了将裂变的热导出来,反应堆必须有冷却剂,常用的冷却剂有轻水、重水、氦和液态金属钠等。控制棒是由硼和镉等易于吸收中子的材料制成的。核反应压力容器外有一套机械装置可以 操纵控制棒。

控制棒完全插入反应中心时,能够吸收大量中子,以阻止裂变链式反应的进行。如果把控制棒拔出一点,反应堆就开始运转,链式反应的速度达到一定的稳定值;如果想增加反应堆释放的能量,只需将控制棒再抽出一点,这样被吸收的中子减少,有更多的中子参与裂变反应。要停止链式反应的进行,将控制棒完全插入核反应中心吸收掉大部分中子即可。

控制棒组件:control rod assembly

核反应堆的开、停和核功率的调节都由控制棒控制。控制棒内的材料能强烈吸收中子,可以控制反应堆内链式裂变反应的进行。控制棒也组装成组件的形式。反应堆不运行时,控制棒插在堆芯内。开堆时将控制棒提起,运行中根据需要调节控制棒的高度。一旦发生事故,全部控制棒控制棒会自动快速下落,使反应堆内的链式裂变反应停止。

非能动安全系统:passive safety system

不依赖外来的触发和动力源,而靠自然对流、重力、蓄压势等自然本性来实现安全功能的系统。

稳压器 :pressurizer

稳压器的主要作用,是将一回路的压力维持在15.5MPa(abs)的整定值上,以防止冷却剂水在一回路中汽化。稳压器内贮有两相状态的水,水和蒸汽都在确定的压力所对应的同一温度,依靠喷淋阀和加热器进行压力调节;其次是可缓冲一回路系统水容积的迅速变化。 稳压器的设计应能调节由于负荷瞬动引起的压力波动,即能维持水和蒸汽在饱和状态下的平衡。

它的容量必须有足够的水容积和足够的蒸汽容积。

生物屏蔽:Biological shielding

针对人员保护进行的屏蔽,一般意义上的屏蔽,区别于反射屏蔽

人孔:manhole

工人员进出检修的通道


本文标签: 燃料 反应堆 裂变 核燃料 控制棒